|
|
A055629
|
|
Beginning of first run of at least n consecutive happy numbers.
|
|
3
|
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
This sequence is infinite - see Theorem 3.1 of El-Sedy & Siksek.
|
|
LINKS
|
Table of n, a(n) for n=1..7.
H. G. Grundman, E. A. Teeple, Sequences of consecutive happy numbers, Rocky Mountain J. Math. 37 (6) (2007) 1905-1916.
Hao Pan, On consecutive happy numbers, J. Numb. Theory 128 (6) (2008) 1646-1654.
Esam El-Sedy and Samir Siksek, On happy numbers, Rocky Mountain J. Math. 30 (2000), 565-570.
R. Styer, Smallest Examples of Strings of Consecutive Happy Numbers, J. Int. Seq. 13 (2010), 10.6.3.
|
|
EXAMPLE
|
Lambert Klasen (lambert.klasen(AT)postmaster.co.uk), Oct 17 2004: with notation {9:repeat_count_of_digit_nine}, a(8) = 58{9:11}6{9:143}95, a(9) = 16{9:179}4{9:87}95, a(10) = 16{9:181}5{9:696}95.
|
|
CROSSREFS
|
Cf. A007770.
Sequence in context: A049081 A069432 A338533 * A131751 A042863 A042860
Adjacent sequences: A055626 A055627 A055628 * A055630 A055631 A055632
|
|
KEYWORD
|
base,nonn
|
|
AUTHOR
|
David W. Wilson, Jun 05 2000
|
|
EXTENSIONS
|
The next term a(8) is too large to include.
Entry corrected by Sergio Pimentel, Dec 10 2005
|
|
STATUS
|
approved
|
|
|
|