

A055632


Sum of totient function of primes dividing n is a prime.


3



3, 6, 9, 10, 12, 14, 18, 20, 22, 24, 26, 27, 28, 30, 34, 36, 38, 40, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 66, 68, 70, 72, 74, 76, 80, 81, 82, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 112, 116, 118, 120, 122, 124, 130, 132, 134, 136, 140, 142, 144, 146
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Observe that this sequence includes even numbers and for all primes p as (a phisum) an infinite number of solutions exist, like e.g. (2^w)*p, with 1+p1=p Phisum over its factors.


LINKS

Table of n, a(n) for n=1..63.


EXAMPLE

If n=2^a*3^b*5^c*7^d*11^e then primefactor set is {2,3,5,7,11}. The totient function values of this set are {1,2,4,6,10} and the sum is 1+2+4+6+10=23.


PROG

(PARI) isok(n) = my(vp = factor(n)[, 1]); isprime(sum(i=1, #vp, eulerphi(vp[i]))); \\ Michel Marcus, Dec 19 2013


CROSSREFS

Cf. A001221, A006093, A053571, A055631.
Sequence in context: A110263 A022304 A176423 * A133006 A055264 A113502
Adjacent sequences: A055629 A055630 A055631 * A055633 A055634 A055635


KEYWORD

nonn


AUTHOR

Labos Elemer, Jun 06 2000


STATUS

approved



