

A055521


Restricted left truncatable (Henry VIII) primes.


2



773, 3373, 3947, 4643, 5113, 6397, 6967, 7937, 15647, 16823, 24373, 33547, 34337, 37643, 56983, 57853, 59743, 62383, 63347, 63617, 69337, 72467, 72617, 75653, 76367, 87643, 92683, 97883, 98317, 121997, 124337, 163853, 213613, 236653
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

There are 1440 such primes, the largest being 357686312646216567629137.
Lefttruncatable primes (A024785) which have at least two digits and are not the end of a larger lefttruncatable prime.  Jens Kruse Andersen, Jul 29 2014


REFERENCES

Angell, I. O. and Godwin, H. J. "On Truncatable Primes." Math. Comput. 31, 265267, 1977.
Kahan, S. and Weintraub, S. "Left Truncatable Primes." J. Recr. Math. 29, 254264, 1998.


LINKS

Jens Kruse Andersen, Table of n, a(n) for n = 1..1440 (complete sequence)
Eric Weisstein's World of Mathematics, Truncatable Prime
Index entries for sequences related to truncatable primes


EXAMPLE

773 is in the sequence since 773, 73, 3 are primes, while no digit 1..9 gives a prime if placed before 773. 13 is not in the sequence since for example 113 is prime. 2 and 5 are disqualified for only having one digit.  Jens Kruse Andersen, Jul 29 2014


CROSSREFS

Cf. A024785.
Sequence in context: A133963 A133964 A033919 * A233991 A077077 A177845
Adjacent sequences: A055518 A055519 A055520 * A055522 A055523 A055524


KEYWORD

nonn,base,fini,full


AUTHOR

Eric W. Weisstein


STATUS

approved



