login
A055335
Number of asymmetric (identity) trees with n nodes and 4 leaves.
2
1, 3, 8, 14, 25, 40, 62, 89, 127, 173, 233, 304, 393, 497, 624, 769, 942, 1139, 1369, 1627, 1925, 2257, 2635, 3053, 3524, 4042, 4621, 5253, 5954, 6717, 7557, 8466, 9462, 10536, 11706, 12963, 14326, 15786, 17363, 19046, 20857, 22786, 24854
OFFSET
9,2
FORMULA
G.f.: x^9*(1+x+2*x^2-x^3)/((1-x)^2*(1-x^2)^2*(1+x^2)*(1-x^3)).
a(n) = (-225 -762*n +516*n^2 -100*n^3 +6*n^4)/1152 -(3/128)*(-1)^n*(2*n -11) -(1/16)*(2 -(-1)^n)*(-1)^binomial(n,2) -(1/9)*ChebyshevU(n-1, -1/2) + [n=1]. - G. C. Greubel, Nov 10 2023
MATHEMATICA
Drop[CoefficientList[Series[x^9*(1+x+2*x^2-x^3)/((1-x)*Product[1-x^j, {j, 4}]), {x, 0, 50}], x], 9] (* G. C. Greubel, Nov 10 2023 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 50); Coefficients(R!( x^9*(1+x+2*x^2-x^3)/((1-x)*(&*[1-x^j: j in [1..4]])) )); // G. C. Greubel, Nov 10 2023
(SageMath)
def A055335_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( x^9*(1+x+2*x^2-x^3)/((1-x)*product(1-x^j for j in range(1, 5))) ).list()
a=A055335_list(50); a[9:] # G. C. Greubel, Nov 10 2023
CROSSREFS
Column 4 of A055334.
Sequence in context: A082474 A245181 A241563 * A295200 A321047 A123329
KEYWORD
nonn
AUTHOR
Christian G. Bower, May 12 2000
STATUS
approved