OFFSET
9,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 9..1000
Index entries for linear recurrences with constant coefficients, signature (2,0,-1,0,-2,2,0,1,0,-2,1).
FORMULA
G.f.: x^9*(1+x+2*x^2-x^3)/((1-x)^2*(1-x^2)^2*(1+x^2)*(1-x^3)).
a(n) = (-225 -762*n +516*n^2 -100*n^3 +6*n^4)/1152 -(3/128)*(-1)^n*(2*n -11) -(1/16)*(2 -(-1)^n)*(-1)^binomial(n,2) -(1/9)*ChebyshevU(n-1, -1/2) + [n=1]. - G. C. Greubel, Nov 10 2023
MATHEMATICA
Drop[CoefficientList[Series[x^9*(1+x+2*x^2-x^3)/((1-x)*Product[1-x^j, {j, 4}]), {x, 0, 50}], x], 9] (* G. C. Greubel, Nov 10 2023 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 50); Coefficients(R!( x^9*(1+x+2*x^2-x^3)/((1-x)*(&*[1-x^j: j in [1..4]])) )); // G. C. Greubel, Nov 10 2023
(SageMath)
def A055335_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( x^9*(1+x+2*x^2-x^3)/((1-x)*product(1-x^j for j in range(1, 5))) ).list()
a=A055335_list(50); a[9:] # G. C. Greubel, Nov 10 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Christian G. Bower, May 12 2000
STATUS
approved