login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A054842 If n = a + 10 * b + 100 * c + 1000 * d + ... then a(n) = (2^a) * (3^b) * (5^c) * (7^d) * ... 14
1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 9, 18, 36, 72, 144, 288, 576, 1152, 2304, 4608, 27, 54, 108, 216, 432, 864, 1728, 3456, 6912, 13824, 81, 162, 324, 648, 1296, 2592, 5184, 10368, 20736, 41472, 243, 486, 972 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a((10^k-1)/9) = Primorial(k)= A061509((10^k-1)/9). This is a rearrangement of whole numbers. a(m) = a(n) iff m = n. (Unlike A061509, in which a(n) = a(n*10^k)).) - Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jul 14 2003

Part of the previous comment is incorrect: as a set, this sequence consists of numbers n such that the largest exponent appearing in the prime factorization of n is 9. So this cannot be a rearrangement (or permutation) of the natural numbers. - Tom Edgar, Oct 20 2015

LINKS

R. Zumkeller, Table of n, a(n) for n = 0..9999

FORMULA

a(n) = f(n, 1, 1) with f(x, y, z) = if x > 0 then f(floor(x/10), y*prime(z)^(x mod 10), z+1) else y. - Reinhard Zumkeller, Mar 13 2010

EXAMPLE

a(15)=96 because 3^1 * 2^5 = 3*32 = 96.

PROG

(Haskell)

a054842 = f a000040_list 1 where

   f _      y 0 = y

   f (p:ps) y x = f ps (y * p ^ d) x'  where (x', d) = divMod x 10

-- Reinhard Zumkeller, Aug 03 2015

CROSSREFS

Cf. A054841, A085840.

Cf. A019565, A101278. - Reinhard Zumkeller, Mar 13 2010

Sequence in context: A086066 A263327 A085941 * A290389 A101440 A126605

Adjacent sequences:  A054839 A054840 A054841 * A054843 A054844 A054845

KEYWORD

base,nonn,look

AUTHOR

Henry Bottomley, Apr 11 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 25 11:17 EDT 2019. Contains 323539 sequences. (Running on oeis4.)