login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A054841 If n = 2^a * 3^b * 5^c * 7^d * ... then a(n) = a + 10 * b + 100 * c + 1000 * d + ... . 27
0, 1, 10, 2, 100, 11, 1000, 3, 20, 101, 10000, 12, 100000, 1001, 110, 4, 1000000, 21, 10000000, 102, 1010, 10001, 100000000, 13, 200, 100001, 30, 1002, 1000000000, 111, 10000000000, 5, 10010, 1000001, 1100, 22, 100000000000, 10000001, 100010 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Are there any other numbers besides n=12 for which n=a(n) ? - Ctibor O. Zizka, Oct 08 2008

The sequence is a morphism from (N*,*) into (N,+), cf. formula. Up to n=1023, the digit sum A007953(a(n)) equals Omega(n) = A001222(n). This holds whenever A051903(n)<10. Restricted to these n, the sequence is also injective. However, when n is a multiple of 2^10, 3^10, 5^10 etc, then a(n) is equal to some a(m) with m<n. - M. F. Hasler, Nov 16 2008

This has been called the "Exponential Prime Power Representation" of n by W. Nissen in a post to the sci.math newsgroup (where probably some more sophisticated convention for representing digits > 10 would be used). - M. F. Hasler, Jul 03 2016

LINKS

Robert Israel, Table of n, a(n) for n = 1..10000 (n=1..1023 from Michael De Vlieger)

Evans A Criswell, A Sequence Puzzle (Posted to rec.puzzles Jan 01 1997)

Walter Nissen, Exponential Prime Power Representation, sci.math newsgroup, May 23 1995.

FORMULA

a(m*n) = a(m) + a(n) for all m,n > 0. A007953(a(n))=A001222(n) for all n such that A051903(n) < 10. - M. F. Hasler, Nov 16 2008

a(n) = sum(10^(A049084(A027748(k))-1) * A124010(k): k = 1..A001221(n)). - Reinhard Zumkeller, Aug 03 2015

a(A054842(n)) = n for all n >= 0. - Antti Karttunen, Aug 29 2016

a(n) = Sum_{i>0} e_i*10^(i-1) when n = Product_{i>0} prime(i)^e_i. - M. F. Hasler, Mar 14 2018

EXAMPLE

a(25) = 200 because 25 = 5^2 * 3^0 * 2^0.

a(1024) = 10 = a(3), because 1024 = 2^10; but this two-digit multiplicity overflows into the 10^1 position, which encodes for powers of three.

MAPLE

A:= n -> add(t[2]*10^(numtheory:-pi(t[1])-1), t= ifactors(n)[2]);

seq(A(n), n=1..1000); # Robert Israel, Jul 24 2014

MATHEMATICA

a054841[n_Integer] := Catch[FromDigits[IntegerDigits[Apply[Plus,

     Which[n == 0, Throw["undefined"],

        n == 1, 0,

        Max[Last /@ FactorInteger @ n] > 9, Throw["overflow"],

        True, Power[10, PrimePi[Abs[#]] - 1]] & /@

      Flatten[ConstantArray @@@ FactorInteger[n]]]]]] (* Michael De Vlieger, Jul 24 2014 *)

PROG

(PARI) A054841(n)=sum(i=1, #n=factor(n)~, 10^primepi(n[1, i])*n[2, i])/10 \\ M. F. Hasler, Nov 16 2008

(Haskell)

a054841 1 = 0

a054841 n = sum $ zipWith (*)

                  (map ((10 ^) . subtract 1 . a049084) $ a027748_row n)

                  (map fromIntegral $ a124010_row n)

-- Reinhard Zumkeller, Aug 03 2015

CROSSREFS

Row 10 of A104244.

Left inverse of A054842.

Cf. A001222, A048675, A090880, A090881, A090882, A276075, A276085 (analogous constructions for other bases), A090883, A090884, A049084, A027748, A124010, A056239.

Sequence in context: A305995 A096043 A001202 * A185076 A178643 A038304

Adjacent sequences:  A054838 A054839 A054840 * A054842 A054843 A054844

KEYWORD

base,nonn

AUTHOR

Henry Bottomley, Apr 11 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 18 06:48 EDT 2019. Contains 322209 sequences. (Running on oeis4.)