OFFSET
0,2
REFERENCES
C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (32,-448,3584,-17920,57344,-114688,131072,-65536).
FORMULA
MATHEMATICA
Table[4^n Binomial[2n+8, 7]/8, {n, 0, 20}] (* Harvey P. Dale, Nov 03 2011 *)
LinearRecurrence[{32, -448, 3584, -17920, 57344, -114688, 131072, -65536}, {1, 60, 1584, 27456, 366080, 4073472, 39690240, 349274112}, 20] (* Harvey P. Dale, Feb 25 2022 *)
PROG
(PARI) vector(20, n, n--; 2^(2*n-3)*binomial(2*n+8, 7)) \\ G. C. Greubel, Jul 22 2019
(Magma) [2^(2*n-3)*Binomial(2*n+8, 7): n in [0..20]]; // G. C. Greubel, Jul 22 2019
(Sage) [2^(2*n-3)*binomial(2*n+8, 7) for n in (0..20)] # G. C. Greubel, Jul 22 2019
(GAP) List([0..20], n-> 2^(2*n-3)*Binomial(2*n+8, 7)); # G. C. Greubel, Jul 22 2019
CROSSREFS
KEYWORD
easy,nice,nonn
AUTHOR
STATUS
approved