login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A054328 Tenth unsigned column of Lanczos triangle A053125 (decreasing powers). 2
10, 880, 32032, 732160, 12446720, 171991040, 2037432320, 21422145536, 204770508800, 1810602393600, 15002134118400, 117645194035200, 879986051383296, 6317848574033920, 43758103916707840, 293602761763717120 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

REFERENCES

C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.

Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (40, -720, 7680, -53760, 258048, -860160, 1966080, -2949120, 2621440, -1048576).

FORMULA

a(n) = 4^n*binomial(2*n+10, 9)= -A053125(n+9, 9) = 2* A054332(n).

G.f. 2*(1+40*x+80*x^2)*(5+40*x+16*x^2)/(1-4*x)^10.

MATHEMATICA

CoefficientList[Series[2(1+40x+80x^2)(5+40x+16x^2)/(1-4x)^10, {x, 0, 20}], x]  (* Harvey P. Dale, Feb 28 2011 *)

Table[4^n*Binomial[2*n+10, 9], {n, 0, 20}] (* G. C. Greubel, Jul 22 2019 *)

PROG

(PARI) vector(20, n, n--; 4^n*binomial(2*n+10, 9)) \\ G. C. Greubel, Jul 22 2019

(MAGMA) [4^n*Binomial(2*n+10, 9): n in [0..20]]; // G. C. Greubel, Jul 22 2019

(Sage) [4^n*binomial(2*n+10, 9) for n in (0..20)] # G. C. Greubel, Jul 22 2019

(GAP) List([0..20], n-> 4^n*Binomial(2*n+10, 9)); # G. C. Greubel, Jul 22 2019

CROSSREFS

Cf. A053125, A054327, A054332.

Sequence in context: A203533 A015033 A126677 * A203590 A263056 A233125

Adjacent sequences:  A054325 A054326 A054327 * A054329 A054330 A054331

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 14 02:19 EST 2019. Contains 329108 sequences. (Running on oeis4.)