login
A054328
Tenth unsigned column of Lanczos triangle A053125 (decreasing powers).
2
10, 880, 32032, 732160, 12446720, 171991040, 2037432320, 21422145536, 204770508800, 1810602393600, 15002134118400, 117645194035200, 879986051383296, 6317848574033920, 43758103916707840, 293602761763717120
OFFSET
0,1
REFERENCES
C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
LINKS
Index entries for linear recurrences with constant coefficients, signature (40, -720, 7680, -53760, 258048, -860160, 1966080, -2949120, 2621440, -1048576).
FORMULA
a(n) = 4^n*binomial(2*n+10, 9)= -A053125(n+9, 9) = 2* A054332(n).
G.f. 2*(1+40*x+80*x^2)*(5+40*x+16*x^2)/(1-4*x)^10.
MATHEMATICA
CoefficientList[Series[2(1+40x+80x^2)(5+40x+16x^2)/(1-4x)^10, {x, 0, 20}], x] (* Harvey P. Dale, Feb 28 2011 *)
Table[4^n*Binomial[2*n+10, 9], {n, 0, 20}] (* G. C. Greubel, Jul 22 2019 *)
PROG
(PARI) vector(20, n, n--; 4^n*binomial(2*n+10, 9)) \\ G. C. Greubel, Jul 22 2019
(Magma) [4^n*Binomial(2*n+10, 9): n in [0..20]]; // G. C. Greubel, Jul 22 2019
(Sage) [4^n*binomial(2*n+10, 9) for n in (0..20)] # G. C. Greubel, Jul 22 2019
(GAP) List([0..20], n-> 4^n*Binomial(2*n+10, 9)); # G. C. Greubel, Jul 22 2019
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved