|
|
A054209
|
|
Consider all integer triples (i,j,k), j >= k>0, with i^3=binomial(j+2,3)+binomial(k+2,3), ordered by increasing i; sequence gives j values.
|
|
3
|
|
|
2, 19, 74, 113, 197, 482, 1162, 1959, 1937, 5644, 6061, 10788, 12772, 17624, 19401, 16503, 29195, 25487, 60881, 63348, 89133
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
i values are A054208 and k values are A054210.
|
|
LINKS
|
Table of n, a(n) for n=0..20.
|
|
EXAMPLE
|
2^3=8=binomial(2+2,3)+binomial(2+2,3); 11^3=1331=binomial(19+2,3)+binomial(3,3);
|
|
MATHEMATICA
|
(* This is just a re-computation from A054208 *) A054208 = {2, 11, 45, 65, 109, 280, 644, 1079, 1309, 3180, 3355, 6864, 8284, 9700, 10681, 10856, 16775, 17094, 33506, 35650, 50435}; ijk = Table[ sol = {i, j, k} /. ToRules[ Reduce[ 0 < k <= j && 6*i^3 == j*(j+1)*(j+2) + k*(k+1)*(k+2), {j, k}, Integers]]; Print[sol]; sol, {i, A054208 }]; A054209 = ijk[[All, 2]] (* Jean-François Alcover, Sep 11 2012 *)
|
|
CROSSREFS
|
Cf. A054208, A054210.
Sequence in context: A024389 A110050 A219121 * A256112 A272053 A317274
Adjacent sequences: A054206 A054207 A054208 * A054210 A054211 A054212
|
|
KEYWORD
|
nonn,nice
|
|
AUTHOR
|
Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Jan 31 2000
|
|
EXTENSIONS
|
More terms from Sascha Kurz, Mar 22 2002
|
|
STATUS
|
approved
|
|
|
|