login
A053716
a(n) = 1111111 in base n.
18
7, 127, 1093, 5461, 19531, 55987, 137257, 299593, 597871, 1111111, 1948717, 3257437, 5229043, 8108731, 12204241, 17895697, 25646167, 36012943, 49659541, 67368421, 90054427, 118778947, 154764793, 199411801, 254313151, 321272407, 402321277, 499738093
OFFSET
1,1
COMMENTS
Evaluation of the seventh cyclotomic polynomial at n. - Joerg Arndt, Aug 27 2015
LINKS
Carlos M. da Fonseca and Anthony G. Shannon, A formal operator involving Fermatian numbers, Notes Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 491-498.
FORMULA
a(n) = n^6+n^5+n^4+n^3+n^2+n+1 = (n^7-1)/(n-1).
G.f.: -x*(x^6-6*x^5+57*x^4+232*x^3+351*x^2+78*x+7)/(x-1)^7. - Colin Barker, Oct 29 2012
E.g.f.: exp(x)*(1 + 6*x + 57*x^2 + 122*x^3 + 76*x^4+ 16*x^5 + x^6) - 1. - Stefano Spezia, Oct 03 2024
EXAMPLE
a(3)=1093 because 1111111 base 3=729+243+81+27+9+3+1=121.
MAPLE
A053716 := proc(n)
numtheory[cyclotomic](7, n) ;
end proc:
seq(A053716(n), n=1..20) ; # R. J. Mathar, Feb 07 2014
MATHEMATICA
Table[FromDigits["1111111", n], {n, 1, 30}](*or*)Table[n^6+n^5+n^4+n^3+n^2+n+1, {n, 1, 60}] (* Vladimir Joseph Stephan Orlovsky, Jan 29 2012 *)
CoefficientList[Series[-(x^6 - 6 x^5 + 57 x^4 + 232 x^3 + 351 x^2 + 78 x + 7)/(x - 1)^7, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 08 2014 *)
PROG
(Magma) [7] cat [(n^7-1)/(n-1): n in [2..35]]; // Vincenzo Librandi, Feb 08 2014
CROSSREFS
7th row of the array A055129.
Cf. A104878.
Sequence in context: A139987 A061744 A256146 * A088550 A255954 A278791
KEYWORD
nonn,base,easy
AUTHOR
Henry Bottomley, Mar 23 2000
STATUS
approved