OFFSET
1,1
COMMENTS
Evaluation of the seventh cyclotomic polynomial at n. - Joerg Arndt, Aug 27 2015
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Carlos M. da Fonseca and Anthony G. Shannon, A formal operator involving Fermatian numbers, Notes Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 491-498.
Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
FORMULA
a(n) = n^6+n^5+n^4+n^3+n^2+n+1 = (n^7-1)/(n-1).
G.f.: -x*(x^6-6*x^5+57*x^4+232*x^3+351*x^2+78*x+7)/(x-1)^7. - Colin Barker, Oct 29 2012
E.g.f.: exp(x)*(1 + 6*x + 57*x^2 + 122*x^3 + 76*x^4+ 16*x^5 + x^6) - 1. - Stefano Spezia, Oct 03 2024
EXAMPLE
a(3)=1093 because 1111111 base 3=729+243+81+27+9+3+1=121.
MAPLE
A053716 := proc(n)
numtheory[cyclotomic](7, n) ;
end proc:
seq(A053716(n), n=1..20) ; # R. J. Mathar, Feb 07 2014
MATHEMATICA
Table[FromDigits["1111111", n], {n, 1, 30}](*or*)Table[n^6+n^5+n^4+n^3+n^2+n+1, {n, 1, 60}] (* Vladimir Joseph Stephan Orlovsky, Jan 29 2012 *)
CoefficientList[Series[-(x^6 - 6 x^5 + 57 x^4 + 232 x^3 + 351 x^2 + 78 x + 7)/(x - 1)^7, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 08 2014 *)
PROG
(Magma) [7] cat [(n^7-1)/(n-1): n in [2..35]]; // Vincenzo Librandi, Feb 08 2014
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Henry Bottomley, Mar 23 2000
STATUS
approved