OFFSET
1,1
COMMENTS
k! is an interprime, i.e., the average of two successive primes.
The difference between k! and any of its two closest primes must be 1 or exceed k. - Franklin T. Adams-Watters
Larger terms may involve probable primes. - Hans Havermann, Aug 14 2014
EXAMPLE
For the 1st term, 3! is in the middle between its closest prime neighbors 5 and 7.
For the 2nd term, 5! is in the middle between its closest prime neighbors 113 and 127.
From Jon E. Schoenfield, Jan 14 2022: (Start)
In the table below, k = a(n), k! - d and k! + d are the two closest primes to k!, and d = A033932(k) = A033933(k) = A053711(n):
.
n k d
- ---- ----
1 3 1
2 5 7
3 10 11
4 21 31
5 171 397
6 190 409
7 348 1657
8 1638 2131
9 3329 7607
(End)
MAPLE
for n from 3 to 200 do j := n!-prevprime(n!): if not isprime(n!+j) then next fi: i := 1: while not isprime(n!+i) and (i<=j) do i := i+2 od: if i=j then print(n):fi:od:
MATHEMATICA
PrevPrim[n_] := Block[{k = n - 1}, While[ !PrimeQ[k], k-- ]; k]; NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k] Do[ a = n!; If[2a == PrevPrim[a] + NextPrim[a], Print[n]], {n, 3, 415}]
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Labos Elemer, Feb 10 2000
EXTENSIONS
a(5)-a(6) from Jud McCranie, Jul 04 2000
a(7) from Robert G. Wilson v, Sep 17 2002
a(8) from Donovan Johnson, Mar 23 2008
a(9) from Hans Havermann, Aug 14 2014
STATUS
approved