login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053557
Numerator of Sum_{k=0..n} (-1)^k/k!.
25
1, 0, 1, 1, 3, 11, 53, 103, 2119, 16687, 16481, 1468457, 16019531, 63633137, 2467007773, 34361893981, 15549624751, 8178130767479, 138547156531409, 92079694567171, 4282366656425369, 72289643288657479, 6563440628747948887, 39299278806015611311
OFFSET
0,5
COMMENTS
Numerator of probability of a derangement of n things (A000166(n)/n! or !n/n!).
Also denominators of successive convergents to e using continued fraction 2 + 1/(1 + 1/(2 + 2/(3 + 3/(4 + 4/(5 + 5/(6 + 6/(7 + 7/(8 + ...))))))).
REFERENCES
L. Lorentzen and H. Waadeland, Continued Fractions with Applications, North-Holland 1992, p. 562.
E. Maor, e: The Story of a Number, Princeton Univ. Press 1994, pp. 151 and 157.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..450 (terms 0..100 from T. D. Noe)
Leonhardo Eulero, Introductio in analysin infinitorum. Tomus primus, Lausanne, 1748.
L. Euler, Introduction à l'analyse infinitésimale, Tome premier, Tome second, trad. du latin en français par J. B. Labey, Paris, 1796-1797.
Eric Weisstein's World of Mathematics, Continued Fraction Constants
Eric Weisstein's World of Mathematics, Generalized Continued Fraction
Eric Weisstein's World of Mathematics, Subfactorial
FORMULA
Let exp(-x)/(1-x) = Sum_{n >= 0} (a_n/b_n)*x^n. Then sequence a_n is A053557. - Aleksandar Petojevic, Apr 14 2004
EXAMPLE
1, 0, 1/2, 1/3, 3/8, 11/30, 53/144, 103/280, 2119/5760, ...
MATHEMATICA
Numerator[CoefficientList[Series[Exp[-x]/(1-x), {x, 0, 30}], x]] (* Jean-François Alcover, Nov 18 2011 *)
Table[Numerator[Sum[(-1)^k/k!, {k, 0, n}]], {n, 0, 30}] (* Harvey P. Dale, Dec 02 2011 *)
Join[{1, 0}, Numerator[RecurrenceTable[{a[n]==a[n-1]+a[n-2]/(n-2), a[1] ==0, a[2]==1}, a, {n, 2, 30}]]] (* Terry D. Grant, May 07 2017; corrected by G. C. Greubel, May 16 2019 *)
PROG
(PARI) for(n=0, 30, print1(numerator(sum(k=0, n, (-1)^k/k!)), ", ")) \\ G. C. Greubel, Nov 05 2017
(Magma) [Numerator( (&+[(-1)^k/Factorial(k): k in [0..n]]) ): n in [0..30]]; // G. C. Greubel, May 16 2019
(Sage) [numerator(sum((-1)^k/factorial(k) for k in (0..n))) for n in (0..30)] # G. C. Greubel, May 16 2019
(Python)
from fractions import Fraction
from math import factorial
def A053557(n): return sum(Fraction(-1 if k&1 else 1, factorial(k)) for k in range(n+1)).numerator # Chai Wah Wu, Jul 31 2023
CROSSREFS
Cf. A000166/A000142, A053556 (denominators), A053518-A053520. See also A103816.
a(n) = (N(n, n) of A103361), A053557/A053556 = A000166/n! = (N(n, n) of A103361)/(D(n, n) of A103360), Cf. A053518-A053520.
Sequence in context: A107958 A378159 A253972 * A039302 A074512 A005502
KEYWORD
nonn,frac,nice,easy
AUTHOR
N. J. A. Sloane, Jan 17 2000
EXTENSIONS
More terms from Vladeta Jovovic, Mar 31 2000
STATUS
approved