login
A053536
Expansion of 1/((1+4*x)*(1-12*x)).
2
1, 8, 112, 1280, 15616, 186368, 2240512, 26869760, 322502656, 3869769728, 46438285312, 557255229440, 6687079530496, 80244887257088, 962938915520512, 11555265912504320, 138663195245019136, 1663958325760360448, 19967499977843802112, 239609999459247718400
OFFSET
0,2
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
FORMULA
a(n) = (4^n/4)*(3^(n+1) + (-1)^n).
a(n) = 8*a(n-1) + 48*a(n-2), with a(0)=1, a(1)=8.
E.g.f.: (3*exp(12*x) + exp(-4*x))/4. - G. C. Greubel, May 16 2019
a(n) = 2^n*A053524(n+1). - R. J. Mathar, Mar 08 2021
MATHEMATICA
LinearRecurrence[{8, 48}, {1, 8}, 30] (* G. C. Greubel, May 16 2019 *)
PROG
(PARI) Vec(1/((1+4*x)*(1-12*x)) + O(x^30)) \\ Michel Marcus, Dec 03 2014
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/((1+4*x)*(1-12*x)) )); // G. C. Greubel, May 16 2019
(Sage) (1/((1+4*x)*(1-12*x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 16 2019
(GAP) a:=[1, 8];; for n in [3..30] do a[n]:=8*a[n-1]+48*a[n-2]; od; a; # G. C. Greubel, May 16 2019
CROSSREFS
Cf. A015518.
Sequence in context: A317568 A075851 A270111 * A139741 A067900 A067414
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, Jan 15 2000
EXTENSIONS
Terms a(12) onward added by G. C. Greubel, May 16 2019
STATUS
approved