login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053166
Smallest positive integer for which n divides a(n)^4.
15
1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 6, 13, 14, 15, 2, 17, 6, 19, 10, 21, 22, 23, 6, 5, 26, 3, 14, 29, 30, 31, 4, 33, 34, 35, 6, 37, 38, 39, 10, 41, 42, 43, 22, 15, 46, 47, 6, 7, 10, 51, 26, 53, 6, 55, 14, 57, 58, 59, 30, 61, 62, 21, 4, 65, 66, 67, 34, 69, 70, 71, 6, 73, 74, 15, 38
OFFSET
1,2
COMMENTS
According to Broughan (2002, 2003, 2006), a(n) is the "upper 4th root of n". The "lower 4th root of n" is sequence A053164. - Petros Hadjicostas, Sep 15 2019
LINKS
Kevin A. Broughan, Restricted divisor sums, Acta Arithmetica, 101(2) (2002), 105-114.
Kevin A. Broughan, Relationship between the integer conductor and k-th root functions, Int. J. Pure Appl. Math. 5(3) (2003), 253-275.
Kevin A. Broughan, Relaxations of the ABC Conjecture using integer k'th roots, New Zealand J. Math. 35(2) (2006), 121-136.
Eric Weisstein's World of Mathematics, Smarandache Ceil Function.
FORMULA
a(n) = n/A000190(n) = A019554(n)/(A008835(A019554(n)^2))^(1/4).
If n is 5th-power-free (i.e., not 32, 64, 128, 243, ...) then a(n) = A007947(n).
Multiplicative with a(p^e) = p^(ceiling(e/4)). - Christian G. Bower, May 16 2005
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(7)/2) * Product_{p prime} (1 - 1/p^2 + 1/p^3 - 1/p^4 + 1/p^5 - 1/p^6) = 0.3528057925... . - Amiram Eldar, Oct 27 2022
MATHEMATICA
f[p_, e_] := p^Ceiling[e/4]; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 08 2020 *)
PROG
(PARI) a(n) = my(f=factor(n)); for (i=1, #f~, f[i, 2] = ceil(f[i, 2]/4)); factorback(f); \\ Michel Marcus, Jun 09 2014
CROSSREFS
Cf. A000188 (inner square root), A019554 (outer square root), A053150 (inner 3rd root), A019555 (outer 3rd root), A053164 (inner 4th root), A015052 (outer 5th root), A015053 (outer 6th root).
Sequence in context: A347230 A015052 A348036 * A166140 A019555 A378997
KEYWORD
nonn,mult
AUTHOR
Henry Bottomley, Feb 29 2000
STATUS
approved