login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052949 Expansion of (2-4*x+x^3)/((1-x)*(1-2*x-x^2+x^3)). 2
2, 2, 4, 7, 15, 32, 71, 158, 354, 794, 1783, 4005, 8998, 20217, 45426, 102070, 229348, 515339, 1157955, 2601900, 5846415, 13136774, 29518062, 66326482, 149034251, 334876921, 752461610, 1690765889, 3799116466, 8536537210, 19181424996 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1008

Index entries for linear recurrences with constant coefficients, signature (3,-1,-2,1).

FORMULA

G.f.: (2 -4*x +x^3)/((1-x)*(1 -2*x -x^2 +x^3)).

a(n) = 2*a(n-1) + a(n-2) - a(n-3) - 1.

a(n) = A006356(n-1) + 1, n>0.

a(n) = 1 + Sum_{alpha=RootOf(1-2*z-z^2+z^3)} (1/7)*(1 + 2*alpha - alpha^2)*alpha^(-1-n).

MAPLE

spec:= [S, {S=Union(Sequence(Prod(Union(Sequence(Z), Z), Z)), Sequence(Z))}, unlabeled ]: seq(combstruct[count ](spec, size=n), n=0..20);

seq(coeff(series((2-4*x+x^3)/((1-x)*(1-2*x-x^2+x^3)), x, n+1), x, n), n = 0..40); # G. C. Greubel, Oct 21 2019

MATHEMATICA

LinearRecurrence[{3, -1, -2, 1}, {2, 2, 4, 7}, 40] (* G. C. Greubel, Oct 21 2019 *)

PROG

(PARI) my(x='x+O('x^40)); Vec((2-4*x+x^3)/((1-x)*(1-2*x-x^2+x^3))) \\ G. C. Greubel, Oct 21 2019

(MAGMA) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (2-4*x+x^3)/((1-x)*(1-2*x-x^2+x^3)) )); // G. C. Greubel, Oct 21 2019

(Sage)

def A052949_list(prec):

    P.<x> = PowerSeriesRing(ZZ, prec)

    return P((2-4*x+x^3)/((1-x)*(1-2*x-x^2+x^3))).list()

A052949_list(40) # G. C. Greubel, Oct 21 2019

(GAP) a:=[2, 2, 4, 7];; for n in [5..40] do a[n]:=3*a[n-1]-a[n-2]-2*a[n-3] +a[n-4]; od; a; # G. C. Greubel, Oct 21 2019

CROSSREFS

Cf. A006356.

Sequence in context: A049906 A014265 A153967 * A014266 A032441 A238184

Adjacent sequences:  A052946 A052947 A052948 * A052950 A052951 A052952

KEYWORD

easy,nonn

AUTHOR

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

EXTENSIONS

More terms from James A. Sellers, Jun 05 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 9 19:46 EDT 2020. Contains 335545 sequences. (Running on oeis4.)