This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A052942 Expansion of 1/((1+x)*(1-2*x+2*x^2-2*x^3)). 9
 1, 1, 1, 1, 3, 5, 7, 9, 15, 25, 39, 57, 87, 137, 215, 329, 503, 777, 1207, 1865, 2871, 4425, 6839, 10569, 16311, 25161, 38839, 59977, 92599, 142921, 220599, 340553, 525751, 811593, 1252791, 1933897, 2985399, 4608585, 7114167, 10981961 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS The compositions of n  in which each natural number is colored by one of  p different colors are called p-colored compositions of n.  For n >= 4, 3*a(n-4) equals the number of 3-colored compositions of n with all parts >= 4, such that  no adjacent parts have  the same color. - Milan Janjic, Nov 27 2011 a(n+3) equals the number of ternary words of length n having at least 3 zeros between every two successive nonzero letters. - Milan Janjic, Mar 09 2015 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 933 Index entries for linear recurrences with constant coefficients, signature (1,0,0,2). FORMULA G.f.: 1/(1-x-2*x^4). Recurrence: {a(1)=1, a(0)=1, a(2)=1, a(3)=1, 2*a(n)+a(n+3)-a(n+4)=0}. Sum(1/539*(27+72*_alpha^3+96*_alpha^2+128*_alpha)*_alpha^(-1-n), _alpha=RootOf(-1+_Z+2*_Z^4)) a(n) = sum(A128099(n-2*k, k),k=0..floor(n/3)). - Johannes W. Meijer, Aug 28 2013 a(n) = hypergeom([(1-n)/4,(2-n)/4,(3-n)/4,-n/4],[(1-n)/3,(2-n)/3,-n/3],-512/27)) for n>=9. - Peter Luschny, Mar 09 2015 MAPLE spec := [S, {S=Sequence(Union(Z, Prod(Union(Z, Z), Z, Z, Z)))}, unlabeled ]: seq(combstruct[count ](spec, size=n), n=0..20); seq(add(binomial(n-3*k, k)*2^k, k=0..floor(n/3)), n=0..39); # Zerinvary Lajos, Apr 03 2007 with(combstruct): SeqSeqSeqL := [T, {T=Sequence(S), S=Sequence(U, card >= 1), U=Sequence(Z, card >3)}, unlabeled]: seq(count(SeqSeqSeqL, size=j+4), j=0..39); # Zerinvary Lajos, Apr 04 2009 a := n -> `if`(n<9, [1, 1, 1, 1, 3, 5, 7, 9, 15][n+1], hypergeom([(1-n)/4, (2-n)/4, (3-n)/4, -n/4], [(1-n)/3, (2-n)/3, -n/3], -512/27)): seq(simplify(a(n)), n=0..39); # Peter Luschny, Mar 09 2015 MATHEMATICA CoefficientList[Series[1 / ((1 + x) (1 - 2 x + 2 x^2 - 2 x^3)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 10 2015 *) PROG (PARI) Vec( 1/(1-x-2*x^4)  +O(x^66)) \\ Joerg Arndt, Aug 28 2013 (MAGMA) I:=[1, 1, 1, 1]; [n le 4 select I[n] else Self(n-1)+2*Self(n-4): n in [1..40]]; // Vincenzo Librandi, Mar 10 2015 CROSSREFS Column k=3 of A143453. Sequence in context: A018388 A100866 A102633 * A240944 A117913 A064411 Adjacent sequences:  A052939 A052940 A052941 * A052943 A052944 A052945 KEYWORD easy,nonn AUTHOR encyclopedia(AT)pommard.inria.fr, Jan 25 2000 EXTENSIONS More terms from James A. Sellers, Jun 06 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 21 06:31 EST 2017. Contains 294989 sequences.