OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..395
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 501
FORMULA
E.g.f.: (1-x)/(1 - 2*x - x^2 + x^3).
a(n) = 2*n*a(n-1) + n*(n-1)*a(n-2) - n*(n-1)*(n-2)*a(n-3), with a(0)=1, a(1)=1, a(2)=6.
a(n) = Sum((-1/7)*(-2*_alpha+_alpha^2-1)*_alpha^(-1-n), _alpha = RootOf(_Z^3-_Z^2-2*_Z+1))*n!.
a(n) = n!*A077998(n). - R. J. Mathar, Nov 27 2011
MAPLE
spec := [S, {S=Sequence(Prod(Z, Union(Z, Sequence(Z))))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
With[{nn=20}, CoefficientList[Series[(1-x)/(1-2x-x^2+x^3), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Apr 14 2018 *)
PROG
(PARI) my(x='x+O('x^30)); Vec(serlaplace( (1-x)/(1-2*x-x^2+x^3) )) \\ G. C. Greubel, May 06 2019
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (1-x)/(1-2*x-x^2+x^3) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 06 2019
(Sage) m = 30; T = taylor((1-x)/(1-2*x-x^2+x^3), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 06 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved