login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052556 Expansion of e.g.f. 1/(1-x-x^3). 1
1, 1, 2, 12, 72, 480, 4320, 45360, 524160, 6894720, 101606400, 1636588800, 28740096000, 547977830400, 11245999564800, 247150455552000, 5795612798976000, 144409095806976000, 3809412354908160000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..420

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 497

FORMULA

E.g.f.: 1/(1-x-x^3).

a(n) = n*a(n-1) + n*(n-1)*(n-2)*a(n-3), with a(0)=1, a(1)=1, a(2)=2.

a(n) = Sum(1/31*(4+6*_alpha^2+9*_alpha)*_alpha^(-1-n), _alpha=RootOf(-1+_Z+_Z^3))*n!.

a(n) = n! * A000930(n). - R. J. Mathar, Nov 27 2011

MAPLE

spec := [S, {S=Sequence(Union(Z, Prod(Z, Z, Z)))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);

MATHEMATICA

With[{nn=30}, CoefficientList[Series[1/(1-x-x^3), {x, 0, nn}], x]* Range[0, nn]!] (* G. C. Greubel, May 01 2017 *)

PROG

(PARI) x='x+O('x^30); Vec(serlaplace( 1/(1-x-x^3) )) \\ G. C. Greubel, May 01 2017

(MAGMA) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( 1/(1-x-x^3) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 07 2019

(Sage) m = 30; T = taylor(1/(1-x-x^3), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 07 2019

(GAP) a:=[1, 2, 12];; for n in [4..30] do a[n]:=n*a[n-1]+n*(n-1)*(n-2) *a[n-3]; od; Concatenation([1], a); # G. C. Greubel, May 07 2019

CROSSREFS

Sequence in context: A018931 A062119 A181966 * A052833 A277490 A296975

Adjacent sequences:  A052553 A052554 A052555 * A052557 A052558 A052559

KEYWORD

easy,nonn

AUTHOR

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 28 13:11 EST 2020. Contains 331321 sequences. (Running on oeis4.)