login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052471
Number of noncaterpillar trees on n nodes (A000055-A005418).
2
0, 0, 0, 0, 0, 0, 1, 3, 11, 34, 99, 279, 773, 2103, 5661, 15160, 40373, 107355, 285059, 757273, 2013177, 5361100, 14303274, 38250297, 102538714, 275597098, 742674804, 2006661720, 5436008057, 14763754746, 40196603110, 109703958381, 300091975184, 822705857129
OFFSET
1,8
LINKS
Eric Weisstein's World of Mathematics, Caterpillar Graph
MAPLE
with(numtheory):
b:= proc(n) option remember; `if`(n<=1, n,
(add(add(d*b(d), d=divisors(j))*b(n-j), j=1..n-1))/(n-1))
end:
a:= n-> b(n) -(add(b(k) *b(n-k), k=0..n)-`if`(irem(n, 2)=0,
b(n/2), 0))/2 -ceil(2^(n-4) + 2^(iquo(n-2, 2)-1)):
seq(a(n), n=1..40); # Alois P. Heinz, May 18 2013
MATHEMATICA
b[n_] := b[n] = If[n <= 1, n, (Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n - j], {j, 1, n-1}])/(n-1)]; a[n_] := b[n] - (Sum[b[k]*b[n-k], {k, 0, n}] - If[ Mod[n, 2] == 0, b[n/2], 0])/2 - Ceiling[2^(n-4) + 2^(Quotient[n-2, 2] - 1)]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Feb 19 2016, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A036542 A084266 A357592 * A037496 A355364 A180762
KEYWORD
nonn
EXTENSIONS
a(14) and up from Eric W. Weisstein, Jul 17 2004.
STATUS
approved