This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A052142 E.g.f.: exp(x/(1-4*x)^(1/2)). 0
 1, 1, 5, 49, 697, 12881, 291901, 7823425, 241878449, 8469678817, 331194361141, 14301627569681, 675802760007145, 34681947121134769, 1920727213363900397, 114166002761833118881, 7248797582463164166241, 489621781318487529974465 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 REFERENCES R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see page 191. LINKS Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties , arXiv:1103.2582 [math.CO], 2011-2013. FORMULA E.g.f.: exp(x/(1-4*x)^(1/2)). a(n) = n!*sum((sum(2^k*k/(n-m)*binomial(2*(n-m)-k-1,n-m-1)*binomial(k+m-1,m-1),k,1,n-m))/m!,m,1,n-1)+1. - Vladimir Kruchinin, Sep 10 2010 Recurrence (for n>5): (n-5)*a(n) = 6*(2*n^2 - 13*n + 16)*a(n-1) - (48*n^3 - 432*n^2 + 1199*n - 1051)*a(n-2) + 2*(n-2)*(4*n-15)*(8*n^2 - 54*n + 89)*a(n-3) + 4*(n-4)*(n-3)*(n-2)*a(n-4). - Vaclav Kotesovec, Jun 27 2013 a(n) ~ n^(n-1/3)*exp(3*n^(1/3)/4-n)*4^n/sqrt(6). - Vaclav Kotesovec, Jun 27 2013 MATHEMATICA CoefficientList[Series[E^(x/(1-4*x)^(1/2)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 27 2013 *) PROG (Maxima) a(n):=n!*sum((sum(2^k*k/(n-m)*binomial(2*(n-m)-k-1, n-m-1)*binomial(k+m-1, m-1), k, 1, n-m))/m!, m, 1, n-1)+1; /* Vladimir Kruchinin, Sep 10 2010 */ (PARI) N=33;  x='x+O('x^N); egf=exp(x/sqrt(1-4*x)); Vec(serlaplace(egf)) /* Joerg Arndt, Sep 15 2012 */ CROSSREFS Sequence in context: A116873 A089914 A267220 * A136729 A102773 A028575 Adjacent sequences:  A052139 A052140 A052141 * A052143 A052144 A052145 KEYWORD nonn AUTHOR N. J. A. Sloane, Jan 23 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 20 08:16 EST 2018. Contains 317385 sequences. (Running on oeis4.)