This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A089914 a(n) = 3^n *n! *L_{n}^{-1/3}(-1), where L_n^{alpha}(x) are generalized Laguerre polynomials. 1
 1, 5, 49, 683, 12181, 263093, 6650245, 192153587, 6238115689, 224551351493, 8869372524409, 381149538287675, 17695559832649021, 882309688871504117, 47006884504348992589 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS FORMULA a(n) ~ n^(n+1/12)*3^n*exp(-n+2*sqrt(n)-1/2)/sqrt(2) * (1 + 65/(144*sqrt(n))). - Vaclav Kotesovec, Jun 22 2013 From Peter Bala, Jun 14 2014: (Start) E.g.f.: 1/(1 - 3*x)^(2/3)*exp(3*x/(1 - 3*x)) = 1 + 5*x + 49*x^2/2! + 683*x^3/3! + .... Dobinski-type formula: a(n) = (3^n/exp(1))*sum {k >= 0} (n!/k!)*binomial(n + k - 1/3,k - 1/3). Recurrence equation: a(n) = (6*n - 1)a(n-1) - (n - 1)*(9*n - 12)*a(n-2) with a(0) = 1 and a(1) = 5. (End) MAPLE A089914 := proc(n)         3^n*n!*LaguerreL(n, -1/3, -1) ;         simplify(%) ; end proc; MATHEMATICA Table[3^n*n!*LaguerreL[n, -1/3, -1], {n, 0, 20}] (* Vaclav Kotesovec, Jun 22 2013 *) CROSSREFS Sequence in context: A243945 A228511 A116873 * A267220 A052142 A136729 Adjacent sequences:  A089911 A089912 A089913 * A089915 A089916 A089917 KEYWORD nonn AUTHOR Karol A. Penson, Nov 14 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.