login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A089914 a(n) = 3^n *n! *L_{n}^{-1/3}(-1), where L_n^{alpha}(x) are generalized Laguerre polynomials. 1
1, 5, 49, 683, 12181, 263093, 6650245, 192153587, 6238115689, 224551351493, 8869372524409, 381149538287675, 17695559832649021, 882309688871504117, 47006884504348992589 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..14.

FORMULA

a(n) ~ n^(n+1/12)*3^n*exp(-n+2*sqrt(n)-1/2)/sqrt(2) * (1 + 65/(144*sqrt(n))). - Vaclav Kotesovec, Jun 22 2013

From Peter Bala, Jun 14 2014: (Start)

E.g.f.: 1/(1 - 3*x)^(2/3)*exp(3*x/(1 - 3*x)) = 1 + 5*x + 49*x^2/2! + 683*x^3/3! + ....

Dobinski-type formula: a(n) = (3^n/exp(1))*sum {k >= 0} (n!/k!)*binomial(n + k - 1/3,k - 1/3).

Recurrence equation: a(n) = (6*n - 1)a(n-1) - (n - 1)*(9*n - 12)*a(n-2) with a(0) = 1 and a(1) = 5. (End)

MAPLE

A089914 := proc(n)

        3^n*n!*LaguerreL(n, -1/3, -1) ;

        simplify(%) ;

end proc;

MATHEMATICA

Table[3^n*n!*LaguerreL[n, -1/3, -1], {n, 0, 20}] (* Vaclav Kotesovec, Jun 22 2013 *)

CROSSREFS

Sequence in context: A243945 A228511 A116873 * A267220 A052142 A136729

Adjacent sequences:  A089911 A089912 A089913 * A089915 A089916 A089917

KEYWORD

nonn

AUTHOR

Karol A. Penson, Nov 14 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 5 15:24 EST 2016. Contains 278770 sequences.