login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A089914 a(n) = 3^n *n! *L_{n}^{-1/3}(-1), where L_n^{alpha}(x) are generalized Laguerre polynomials. 1
1, 5, 49, 683, 12181, 263093, 6650245, 192153587, 6238115689, 224551351493, 8869372524409, 381149538287675, 17695559832649021, 882309688871504117, 47006884504348992589 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..14.

FORMULA

a(n) ~ n^(n+1/12)*3^n*exp(-n+2*sqrt(n)-1/2)/sqrt(2) * (1 + 65/(144*sqrt(n))). - Vaclav Kotesovec, Jun 22 2013

From Peter Bala, Jun 14 2014: (Start)

E.g.f.: 1/(1 - 3*x)^(2/3)*exp(3*x/(1 - 3*x)) = 1 + 5*x + 49*x^2/2! + 683*x^3/3! + ....

Dobinski-type formula: a(n) = (3^n/exp(1))*sum {k >= 0} (n!/k!)*binomial(n + k - 1/3,k - 1/3).

Recurrence equation: a(n) = (6*n - 1)a(n-1) - (n - 1)*(9*n - 12)*a(n-2) with a(0) = 1 and a(1) = 5. (End)

MAPLE

A089914 := proc(n)

        3^n*n!*LaguerreL(n, -1/3, -1) ;

        simplify(%) ;

end proc;

MATHEMATICA

Table[3^n*n!*LaguerreL[n, -1/3, -1], {n, 0, 20}] (* Vaclav Kotesovec, Jun 22 2013 *)

CROSSREFS

Sequence in context: A243945 A228511 A116873 * A052142 A136729 A102773

Adjacent sequences:  A089911 A089912 A089913 * A089915 A089916 A089917

KEYWORD

nonn

AUTHOR

Karol A. Penson, Nov 14 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 23 01:23 EST 2014. Contains 249836 sequences.