login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052121
Triangle of coefficients of polynomials enumerating trees with n labeled nodes by inversions.
2
1, 1, 2, 1, 6, 6, 3, 1, 24, 36, 30, 20, 10, 4, 1, 120, 240, 270, 240, 180, 120, 70, 35, 15, 5, 1, 720, 1800, 2520, 2730, 2520, 2100, 1610, 1140, 750, 455, 252, 126, 56, 21, 6, 1, 5040, 15120, 25200, 31920, 34230, 32970, 29400, 24640, 19600, 14840, 10696, 7336
OFFSET
1,3
COMMENTS
Specialization of Tutte polynomials for complete graphs. See the Gessel and Sagan paper. - Tom Copeland, Jan 17 2017
REFERENCES
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.
J. W. Moon, Counting labelled trees, Canad. Math. Monographs No 1 (1970) Section 4.5.
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.48.
LINKS
I. Gessel and B. Sagan, The Tutte polynomial of a graph, depth-first search, and simplicial complex partitions, The Elect. Jrn. of Comb., Vol. 3, Issue 2, 1996.
I. M. Gessel, B. E. Sagan, Y.-N. Yeh, Enumeration of trees by inversions, J. Graph Theory 19 (4) (1995) 435-459
C. L. Mallows, J. Riordan, The inversion enumerator for labeled trees, Bull. Am. Math. Soc. 74 (1) (1968) 92-94, eq. (5)
FORMULA
Sum_{k=0..binomial(n-1,2)} T(n,k) = A000272(n).
Sum_{k=0..binomial(n-1,2)} (-1)^k*T(n,k) = A000111(n-1).
E.g.f.: (y-1)*log(Sum_{n>=0} (y-1)^(-n)*y^binomial(n, 2)*x^n/n!).
Sum_{k=0..binomial(n-1,2)} k*T(n,k) = A057500(n). - Alois P. Heinz, Nov 29 2015
Equals the coefficient [x^t] of the polynomial J_n(x) which satisfies sum_{>=0} J_{n+1}(x)*y^n/n! = exp[ sum_{n>=1} J_n(x) (x^n-1)/(x-1)*y^n/n!]. - R. J. Mathar, Jul 02 2018
EXAMPLE
1 : 1;
2 : 1;
3 : 2, 1;
4 : 6, 6, 3, 1;
5 : 24, 36, 30, 20, 10, 4, 1;
6 : 120, 240, 270, 240, 180, 120, 70, 35, 15, 5, 1;
7 : 720, 1800, 2520, 2730, 2520, 2100, 1610, 1140, 750, 455, 252, 126, 56, 21, 6, 1;
...
MAPLE
for n from 2 to 10 do
add( J[i]*(x^i-1)/(x-1)*y^i/i! , i=1..n-1) ;
exp(%) ;
coeftayl(%, y=0, n-1)*(n-1)! ;
expand(%) ;
J[n] := factor(convert(%, polynom)) ;
for t from 0 to (n-1)*(n-2)/2 do
printf("%d, ", coeff(J[n], x, t)) ;
end do:
printf("\n") ;
end do: # R. J. Mathar, Jul 02 2018
MATHEMATICA
rows = 8; egf = (y - 1)*Log[Sum[(y^Binomial[n, 2]*(x^n/n!))/(y - 1)^n, {n, 0, rows + 1}]]; t = CoefficientList[ Series[egf, {x, 0, rows}, {y, 0, 3*rows}], {x, y}] ; Table[(n - 1)!*t[[n, k]], {n, 2, rows + 1}, {k, 1, Binomial[n - 2, 2] + 1}] // Flatten (* Jean-François Alcover, Dec 10 2012, after Vladeta Jovovic *)
CROSSREFS
KEYWORD
nonn,easy,nice,tabf
AUTHOR
N. J. A. Sloane, Jan 23 2000
EXTENSIONS
Formulae and more terms from Vladeta Jovovic, Apr 06 2001
STATUS
approved