

A052119


Decimal expansion of number with continued fraction expansion 0, 1, 2, 3, 4, 5, 6, ...


7



6, 9, 7, 7, 7, 4, 6, 5, 7, 9, 6, 4, 0, 0, 7, 9, 8, 2, 0, 0, 6, 7, 9, 0, 5, 9, 2, 5, 5, 1, 7, 5, 2, 5, 9, 9, 4, 8, 6, 6, 5, 8, 2, 6, 2, 9, 9, 8, 0, 2, 1, 2, 3, 2, 3, 6, 8, 6, 3, 0, 0, 8, 2, 8, 1, 6, 5, 3, 0, 8, 5, 2, 7, 6, 4, 6, 4, 1, 1, 1, 2, 9, 9, 6, 9, 6, 5, 6, 5, 4, 1, 8, 2, 6, 7, 6, 5, 6, 8, 7, 2, 3, 9, 8, 2
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


LINKS

Table of n, a(n) for n=0..104.
Simon Plouffe, 10000 digits
Simon Plouffe, Bessell(1,2)/Bessell(0,2)
Eric Weisstein's World of Mathematics, Continued Fraction Constant
Eric Weisstein's World of Mathematics, Continued Fraction
Index entries for sequences related to Bessel functions or polynomials


FORMULA

BesselI(1, 2)/BesselI(0, 2) = A096789/A070910.  Henry Bottomley, Jul 13 2001
Equivalently, the value of this continued fraction is the ratio of the sums: sum_{n=0..inf} n/(n!n!) and sum_{n=0..inf} 1/(n!n!).  Robert G. Wilson v, Jul 09 2004


EXAMPLE

0.697774657964007982006790592551752599486658...


MATHEMATICA

RealDigits[ FromContinuedFraction[ Range[0, 44]], 10, 110][[1]]
(* Or *) RealDigits[ BesselI[1, 2] / BesselI[0, 2], 10, 110] [[1]]
(* Or *) RealDigits[ Sum[n/(n!n!), {n, 0, Infinity}] / Sum[1/(n!n!), {n, 0, Infinity}], 10, 110] [[1]]  Robert G. Wilson v, Jul 09 2004


PROG

(PARI) besseli(1, 2)/besseli(0, 2) \\ Charles R Greathouse IV, Feb 19 2014


CROSSREFS

Equals 1/A060997.
Sequence in context: A019813 A096767 A247844 * A021593 A019696 A119801
Adjacent sequences: A052116 A052117 A052118 * A052120 A052121 A052122


KEYWORD

cons,easy,nonn,nice


AUTHOR

Robert Lozyniak (11(AT)onna.com), Jan 21 2000


EXTENSIONS

More terms from Vladeta Jovovic, Mar 30, 2000.
Entry revised by N. J. A. Sloane, Aug 13 2006


STATUS

approved



