This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A051258 Fibocyclotomic numbers: numbers formed from cyclotomic polynomials and Fibonacci numbers (A000045). 11
 1, 1, 1, 2, 1, 7, 0, 20, 3, 10, 1, 143, 2, 376, 4, 11, 21, 2583, 6, 6764, 15, 74, 33, 46367, 18, 7435, 88, 2618, 104, 832039, 25, 2178308, 987, 3399, 609, 20160, 136, 39088168, 1596, 23228, 861, 267914295, 182, 701408732, 4895, 35920, 10945, 4807526975 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS For all primes p, a(p) = fib(p+1)-1 and for all n of the form 2^i*p^j (where p is an odd prime and i >= 0 and j >= 2) fib(p)|a(2^i*p^j). a(0) depends on how the zeroth cyclotomic polynomial is defined. LINKS T. D. Noe, Table of n, a(n) for n = 0..500 FORMULA a(n) = Sum (coefficient_of_term_i_of_cp_n times Fib(exponent_of_term_i_of_cp_n)), i=1..degree of cp_n, where cp_n is the n-th cyclotomic polynomial. EXAMPLE a(22) = fib(10)-fib(9)+fib(8)-fib(7)+fib(6)-fib(5)+fib(4)-fib(3)+fib(2)-fib(1) = 33 as the 22nd cyclotomic polynomial is x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1 (The constant term does not affect the result, as fib(0)=0.) MAPLE get_coefficient := proc(e); if(1 = nops(e)) then if(`integer` = op(0, e)) then RETURN(e); else RETURN(1); fi; else if(2 = nops(e)) then if(`*` = op(0, e)) then RETURN(op(1, e)); else RETURN(1); fi; else RETURN(`Cannot find coefficient!`); fi; fi; end; get_exponent := proc(e); if((1 = e) or (-1 = e)) then RETURN(0); else if(1 = nops(e)) then RETURN(1); else if(2 = nops(e)) then if(`^` = op(0, e)) then RETURN(op(2, e)); else RETURN(get_exponent(op(2, e))); fi; else RETURN(`Cannot find exponent!`); fi; fi; fi; end; fibo_cyclotomic := proc(j) local i, p; p := sort(cyclotomic(j, x)); RETURN(add((get_coefficient(op(i, p))*fibonacci(get_exponent(op(i, p)))), i=1..nops(p))); end; MATHEMATICA f[n_]:=Module[{cy=CoefficientList[Cyclotomic[n, x], x]}, Total[ Times@@@ Thread[ {Fibonacci[ Range[0, Length[cy]- 1]], cy}]]]; Join[{1}, Array[f, 50]] (* Harvey P. Dale, Oct 02 2011 *) PROG (PARI) a(n)=my(P=polcyclo(n)); sum(i=1, poldegree(P), polcoeff(P, i)*fibonacci(i)) \\ Charles R Greathouse IV, Jan 05 2013 CROSSREFS Cf. A019320, A054433, A063704, A063706, A063708. Sequence in context: A199458 A287480 A287755 * A063704 A224918 A224508 Adjacent sequences:  A051255 A051256 A051257 * A051259 A051260 A051261 KEYWORD nonn,nice AUTHOR Antti Karttunen, Oct 24 1999 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 10 17:41 EST 2018. Contains 318049 sequences. (Running on oeis4.)