login
A051228
Numbers m such that the Bernoulli number B_m has denominator 42.
32
6, 114, 186, 258, 354, 402, 426, 474, 582, 654, 762, 834, 894, 942, 978, 1002, 1158, 1182, 1194, 1266, 1338, 1362, 1374, 1614, 1842, 1902, 2022, 2094, 2118, 2166, 2274, 2298, 2334, 2406, 2454, 2526, 2598, 2634, 2694, 2742, 2778, 2874, 2922, 2994, 3126
OFFSET
1,1
COMMENTS
From the von Staudt-Clausen theorem, denominator(B_{2*m}) = product of primes p such that (p-1)|2*m.
REFERENCES
B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 75.
FORMULA
a(n) = 2*A051227(n). - Petros Hadjicostas, Jun 06 2020
MATHEMATICA
2*Select[Range[2000], Denominator[BernoulliB[2#]] == 42 &](* Jean-François Alcover, Nov 25 2011 *)
Position[BernoulliB[Range[3200]], _?(Denominator[#]==42&)]//Flatten (* Harvey P. Dale, Jul 02 2018 *)
PROG
(Perl) @p=(2, 3, 5, 7); @c=(4); $p=7; for($n=6; $n<=3126; $n+=6){while($p<$n+1){$p+=2; next if grep$p%$_==0, @p; push@p, $p; push@c, $p-1; }print"$n, "if!grep$n%$_==0, @c; }print"\n"
(PARI) is(n)=denominator(bernfrac(n))==42 \\ Charles R Greathouse IV, Feb 07 2017
KEYWORD
nonn,nice,easy
EXTENSIONS
More terms and Perl program from Hugo van der Sanden
Name edited by Petros Hadjicostas, Jun 06 2020
STATUS
approved