OFFSET
1,2
COMMENTS
All primes in A053176 are in the sequence. If n is in the sequence, its factorization contains only primes in A053176. - Benoit Cloitre, Oct 19 2002
B(2n) has denominator 6 iff (n^2-1)*B(2n) is an integer. - Benoit Cloitre, Feb 15 2004
Subsequence of A156543. - Reinhard Zumkeller, Feb 10 2009
REFERENCES
B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 76.
LINKS
FORMULA
a(n) seems to be asymptotic to c*n, 5 < c < 6. - Benoit Cloitre, Oct 19 2002
MATHEMATICA
ok[n_] := IntegerQ[(n^2 - 1)*BernoulliB[2n]]; Select[Range[300], ok] (* Jean-François Alcover, Jun 27 2012, after Benoit Cloitre *)
result = {}; Do[count = 0;
Do[If[Not[PrimeQ[2*Divisors[n][[i]] + 1]], count++],
{i, 2, DivisorSigma[0, n]}]; If[count == DivisorSigma[0, n] - 1, AppendTo[result, n]], {n, 1, 10000}]; result (* Richard R. Forberg, Aug 06 2016 *)
Position[BernoulliB[2 Range[300]], _?(Denominator[#]==6&)]//Flatten (* Harvey P. Dale, Jan 28 2017 *)
PROG
(PARI) isok(n) = denominator(bernfrac(2*n)) == 6; \\ Michel Marcus, Feb 06 2016
(Magma) [n: n in [0..400] | Denominator(Bernoulli(2*n)) eq 6]; // Vincenzo Librandi, Feb 06 2016
CROSSREFS
KEYWORD
nonn,nice,easy
AUTHOR
STATUS
approved