login
A045979
Bernoulli number B_{2n} has denominator 6.
43
1, 7, 13, 17, 19, 31, 37, 43, 47, 49, 59, 61, 67, 71, 73, 79, 91, 97, 101, 103, 107, 109, 127, 133, 137, 139, 149, 151, 157, 163, 167, 169, 181, 193, 197, 199, 211, 217, 223, 227, 229, 241, 247, 257, 259, 263, 269, 271, 277, 283, 289
OFFSET
1,2
COMMENTS
All primes in A053176 are in the sequence. If n is in the sequence, its factorization contains only primes in A053176. - Benoit Cloitre, Oct 19 2002
B(2n) has denominator 6 iff (n^2-1)*B(2n) is an integer. - Benoit Cloitre, Feb 15 2004
Subsequence of A156543. - Reinhard Zumkeller, Feb 10 2009
REFERENCES
B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 76.
FORMULA
a(n) seems to be asymptotic to c*n, 5 < c < 6. - Benoit Cloitre, Oct 19 2002
MATHEMATICA
ok[n_] := IntegerQ[(n^2 - 1)*BernoulliB[2n]]; Select[Range[300], ok] (* Jean-François Alcover, Jun 27 2012, after Benoit Cloitre *)
result = {}; Do[count = 0;
Do[If[Not[PrimeQ[2*Divisors[n][[i]] + 1]], count++],
{i, 2, DivisorSigma[0, n]}]; If[count == DivisorSigma[0, n] - 1, AppendTo[result, n]], {n, 1, 10000}]; result (* Richard R. Forberg, Aug 06 2016 *)
Position[BernoulliB[2 Range[300]], _?(Denominator[#]==6&)]//Flatten (* Harvey P. Dale, Jan 28 2017 *)
PROG
(PARI) isok(n) = denominator(bernfrac(2*n)) == 6; \\ Michel Marcus, Feb 06 2016
(Magma) [n: n in [0..400] | Denominator(Bernoulli(2*n)) eq 6]; // Vincenzo Librandi, Feb 06 2016
CROSSREFS
KEYWORD
nonn,nice,easy
STATUS
approved