login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A051169 Smallest number m such that 2*m - p is composite for the first n primes p. 3
3, 6, 15, 49, 49, 49, 49, 110, 154, 154, 278, 278, 278, 278, 496, 496, 496, 496, 496, 496, 1321, 1321, 1321, 1321, 1321, 1321, 2686, 2686, 2686, 2686, 2686, 2686, 2686, 3713, 3713, 3713, 3713, 3713, 3713, 21766, 21766, 21766, 21766, 21766, 21766, 21766 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

REFERENCES

Computed by Peter G. Anderson at the Rochester Institute of Technology.

LINKS

Paul S. Bruckman and T. D. Noe, Table of n, a(n) for n=1..974

EXAMPLE

a(2) = 6 because 2*6-2 = 10 and 2*6-3 = 9 are composite.

MATHEMATICA

a[n_] := a[n] = Catch[For[m = 2, True, m++, If[And @@ (! PrimeQ[2*m - #] &) /@ Prime /@ Range[n], Throw[m]]]]; Table[ Print[a[n]]; a[n], {n, 1, 46}] (* Jean-Fran├žois Alcover, Jul 17 2012 *)

Module[{nn=50, prs}, prs=Prime[Range[nn]]; Table[SelectFirst[Range[50000], AllTrue[Table[2#-p, {p, Take[prs, n]}], CompositeQ]&], {n, nn}]] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 18 2015 *)

PROG

(Haskell)

a051169 n = head [m | m <- [2..],

            all (== 0) $ map (a010051' . (2*m -)) $ take n a000040_list]

-- Reinhard Zumkeller, Apr 09 2015

CROSSREFS

See A051610 and A116111 for records. Cf. A025017.

Cf. A010051, A000040.

Sequence in context: A028401 A005655 A277063 * A051610 A230950 A267552

Adjacent sequences:  A051166 A051167 A051168 * A051170 A051171 A051172

KEYWORD

nice,nonn

AUTHOR

Paul S. Bruckman (pbruckman(AT)hotmail.com)

EXTENSIONS

More terms from Paul S. Bruckman, Jan 20 2007

Edited by N. J. A. Sloane, Apr 14 2007, May 04 2007, Jun 10 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 22 23:32 EST 2018. Contains 299472 sequences. (Running on oeis4.)