

A050794


Consider the Diophantine equation x^3+y^3=z^3+1 (1<x<y<z) or 'Fermat near misses'. Arrange solutions by increasing values of z (see A050791). Sequence gives values of x^3+y^3=z^3+1. For corresponding values of x, y, z see A050792, A050793, A050791 respectively.


5



1729, 1092728, 3375001, 15438250, 121287376, 401947273, 3680797185, 6352182209, 7856862273, 12422690497, 73244501505, 145697644729, 179406144001, 648787169394, 938601300672, 985966166178, 1594232306569
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Note that a(1)=1729 is the HardyRamanujan number. [From Omar E. Pol, Jan 28 2009]


REFERENCES

Ian Stewart, "Game, Set and Math", Chapter 8, 'Close Encounters of the Fermat Kind', Penguin Books, Ed. 1991, pp. 107124.
David Wells, "Curious and Interesting Numbers", Revised Ed. 1997, Penguin Books, On number "729", p. 147.


LINKS

Uwe Hollerbach, Table of n, a(n) for n = 1..74
Eric Weisstein's World of Mathematics, Diophantine Equation  3rd Powers


EXAMPLE

E.g. 577^3 + 2304^3 = 2316^3 + 1 = 12422690497.


CROSSREFS

Cf. A050791, A050792, A050793.
Sequence in context: A212920 A182087 A033502 * A138130 A048949 A130876
Adjacent sequences: A050791 A050792 A050793 * A050795 A050796 A050797


KEYWORD

nonn


AUTHOR

Patrick De Geest, Sep 15 1999.


EXTENSIONS

Extended through 1594232306569 by Jud McCranie, Dec 25 2000


STATUS

approved



