login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A050609 Table T(n,k) = Sum_{i=0..2n} (C(2n,i) mod 2)*F(i+k) = Sum_{i=0..n} (C(n,i) mod 2)*F(2i+k). 7
0, 1, 1, 3, 3, 1, 12, 6, 4, 2, 21, 21, 9, 7, 3, 77, 35, 33, 15, 11, 5, 168, 126, 56, 54, 24, 18, 8, 609, 273, 203, 91, 87, 39, 29, 13, 987, 987, 441, 329, 147, 141, 63, 47, 21, 3572, 1598, 1596, 714, 532, 238, 228, 102, 76, 34, 7755, 5781, 2585, 2583, 1155, 861, 385 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Listed antidiagonalwise as T(0,0), T(1,0), T(0,1), T(2,0), T(1,1), T(0,2), ...

LINKS

Table of n, a(n) for n=0..61.

A. Karttunen, On Pascal's Triangle Modulo 2 in Fibonacci Representation, Fibonacci Quarterly, 42 (2004), 38-46.

FORMULA

Also a(n) = A075148(n, k)*A050613(n).

MAPLE

A050609_as_sum := proc(n, k) local i; RETURN(add(((binomial(n, i) mod 2)*fibonacci(k+2*i)), i=0..n)); end;

A050609_as_product := (n, k) -> (`if`(1 = (n mod 2), luc(n+k), fibonacci(n+k)))*product('luc(2^i)^bit_i(n, i)', 'i'=1..floor_log_2(n+1)); # Produces same answers.

[seq(A050609_as_sum(A025581(n), A002262(n)), n=0..119)];

CROSSREFS

Transpose of A050610. First row: A051656, second row: A050611, third row: A048757, fourth row: A050612. A050613 gives other Maple procedures. Cf. A025581, A002262.

Sequence in context: A174287 A186826 A185418 * A120870 A010029 A143603

Adjacent sequences:  A050606 A050607 A050608 * A050610 A050611 A050612

KEYWORD

nonn,tabl

AUTHOR

Antti Karttunen, Dec 02 1999

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 10 20:48 EST 2017. Contains 295856 sequences.