login
a(n) is the coefficient of the term a^(-n) in the asymptotic series for the least positive zero of the generalized Rogers-Ramanujan continued fraction.
0

%I #13 Aug 24 2021 18:07:53

%S 1,-1,2,-6,21,-79,311,-1266,5289,-22553,97763,-429527,1908452,

%T -8560532,38713510,-176318081,808018789,-3723242051,17239848937,

%U -80174546765,374319144257,-1753833845882,8243964424236,-38865436663306

%N a(n) is the coefficient of the term a^(-n) in the asymptotic series for the least positive zero of the generalized Rogers-Ramanujan continued fraction.

%H Bruce C. Berndt, Sen-Shan Huang, Jaebum Sohn and Seung Hwan Son, <a href="https://doi.org/10.1090/S0002-9947-00-02337-0">Some Theorems on the Rogers-Ramanujan Continued Fraction in Ramanujan's Lost Notebook</a>, Transactions of the AMS, 352 (2000), 2157-2177.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Rogers-RamanujanContinuedFraction.html">Rogers-Ramanujan Continued Fraction</a>

%o (PARI) {RR(n,w,z,p,po,i,m,h,h1,j,w1,h2)=w=1+O(x^(n+1)); p=1; po =1; for(i=1,n,w=p-po*x*q^i; po=p; p=w); m=poldegree(w); w1=0; for(i=0,m,h=polcoeff(w,i); h1=0; for (j=1,n-1+i,h1=h1+polcoeff(h,j)*q^j); w1=w1+h1*x^i); q=0; for (i=1,n-1,q=q+s[i]/x^i); q=q+y/x^n; z=eval(w1); kill(q); h2=polcoeff(z,-(n-1)); polcoeff(h2,1)*polcoeff(h2,0)*(-1)} s=vector(30); s[1]=1; print(s[1]); for (j=2,30,s[j]=RR(j); print(s[j])); \\ Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jun 13 2000

%K sign

%O 1,3

%A _Eric W. Weisstein_

%E More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jun 13 2000