login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A050203 a(n) is the coefficient of the term a^(-n) in the asymptotic series for the least positive zero of the generalized Rogers-Ramanujan continued fraction. 0
1, -1, 2, -6, 21, -79, 311, -1266, 5289, -22553, 97763, -429527, 1908452, -8560532, 38713510, -176318081, 808018789, -3723242051, 17239848937, -80174546765, 374319144257, -1753833845882, 8243964424236, -38865436663306 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

REFERENCES

Berndt, B. C.; Huang, S.-S.; Sohn, J.; and Son, S. H. "Some Theorems on the Rogers-Ramanujan Continued Fraction in Ramanujan's Lost Notebook."

LINKS

Table of n, a(n) for n=1..24.

Eric Weisstein's World of Mathematics, Rogers-Ramanujan Continued Fraction

PROG

(PARI) {RR(n, w, z, p, po, i, m, h, h1, j, w1, h2)=w=1+O(x^(n+1)); p=1; po =1; for(i=1, n, w=p-po*x*q^i; po=p; p=w); m=poldegree(w); w1=0; for(i=0, m, h=polcoeff(w, i); h1=0; for (j=1, n-1+i, h1=h1+polcoeff(h, j)*q^j); w1=w1+h1*x^i); q=0; for (i=1, n-1, q=q+s[i]/x^i); q=q+y/x^n; z=eval(w1); kill(q); h2=polcoeff(z, -(n-1)); polcoeff(h2, 1)*polcoeff(h2, 0)*(-1)} s=vector(30); s[1]=1; print(s[1]); for (j=2, 30, s[j]=RR(j); print(s[j]));

CROSSREFS

Sequence in context: A150197 A150198 A033321 * A112806 A150199 A150200

Adjacent sequences:  A050200 A050201 A050202 * A050204 A050205 A050206

KEYWORD

sign

AUTHOR

Eric W. Weisstein

EXTENSIONS

PARI program and more terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jun 13 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 20 23:03 EST 2014. Contains 252290 sequences.