OFFSET
1,3
LINKS
Bruce C. Berndt, Sen-Shan Huang, Jaebum Sohn and Seung Hwan Son, Some Theorems on the Rogers-Ramanujan Continued Fraction in Ramanujan's Lost Notebook, Transactions of the AMS, 352 (2000), 2157-2177.
Eric Weisstein's World of Mathematics, Rogers-Ramanujan Continued Fraction
PROG
(PARI) {RR(n, w, z, p, po, i, m, h, h1, j, w1, h2)=w=1+O(x^(n+1)); p=1; po =1; for(i=1, n, w=p-po*x*q^i; po=p; p=w); m=poldegree(w); w1=0; for(i=0, m, h=polcoeff(w, i); h1=0; for (j=1, n-1+i, h1=h1+polcoeff(h, j)*q^j); w1=w1+h1*x^i); q=0; for (i=1, n-1, q=q+s[i]/x^i); q=q+y/x^n; z=eval(w1); kill(q); h2=polcoeff(z, -(n-1)); polcoeff(h2, 1)*polcoeff(h2, 0)*(-1)} s=vector(30); s[1]=1; print(s[1]); for (j=2, 30, s[j]=RR(j); print(s[j])); \\ Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jun 13 2000
CROSSREFS
KEYWORD
sign
AUTHOR
EXTENSIONS
More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jun 13 2000
STATUS
approved