login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A049800 Triangular array T, read by rows: T(n,k) = (n+1) mod floor((k+1)/2), k = 1..n and n >= 1. 5
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 2, 2, 0, 0, 0, 1, 1, 2, 2, 3, 3, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 0, 0, 0, 0, 2, 2, 2, 2, 4, 4, 2, 2, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,26

LINKS

G. C. Greubel, Rows n = 1..100 of triangle, flattened

EXAMPLE

Array T(n,k) (with rows n >= 1 and columns k >= 1) begins as follows:

  0;

  0, 0;

  0, 0, 0;

  0, 0, 1, 1;

  0, 0, 0, 0, 0;

  0, 0, 1, 1, 1, 1;

  0, 0, 0, 0, 2, 2, 0;

  0, 0, 1, 1, 0, 0, 1, 1;

  0, 0, 0, 0, 1, 1, 2, 2, 0;

  0, 0, 1, 1, 2, 2, 3, 3, 1, 1;

  0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0;

  ...

MAPLE

# To get the sequence:

seq(seq((n+1) mod floor((k+1)/2), k = 1..n), n = 1..30);

# To get the triangular array:

for n from 1 to 30 do

    seq((n+1) mod floor((k+1)/2), k = 1..n);

end do; # Petros Hadjicostas, Nov 20 2019

MATHEMATICA

Table[Mod[n+1, Floor[(k+1)/2]], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Dec 09 2019 *)

PROG

(PARI) T(n, k) = lift(Mod(n+1, (k+1)\2));

for(n=1, 15, for(k=1, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Dec 09 2019

(MAGMA) [ (n+1) mod Floor((k+1)/2): k in [1..n], n in [1..15]]; // G. C. Greubel, Dec 09 2019

(Sage) [[ mod(n+1, floor((k+1)/2)) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Dec 09 2019

(GAP) Flat(List([1..15], n-> List([1..n], k-> (n+1) mod Int((k+1)/2) ))); # G. C. Greubel, Dec 09 2019

CROSSREFS

One-half the row sums are in A049798.

Cf. A049799, A049801.

Sequence in context: A196078 A287086 A180823 * A281082 A204421 A131018

Adjacent sequences:  A049797 A049798 A049799 * A049801 A049802 A049803

KEYWORD

nonn,tabl

AUTHOR

Clark Kimberling

EXTENSIONS

Name edited by Petros Hadjicostas, Nov 20 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 5 07:46 EDT 2020. Contains 335462 sequences. (Running on oeis4.)