login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A131018 Expansion of (q^-3) * psi(q) / psi(q^25) in powers of q where psi() is a Ramanujan theta function. 1
1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, -1, -1, 0, 0, 0, 0, -1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 0, 0, 0, 0, 1, -1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, -1, 0, 0, 0, 1, 1, 0, 0, 0, -1, 1, 0, 0, 0, -2, -2, 0, 0, 0, -1, -2, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

-3,76

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

REFERENCES

F. Calegari, Review of "A first Course in modular forms" by F. Diamond and J. Shurman, Bull. Amer. Math. Soc., 43 (No. 3, 2006), 415-421. See p. 418

LINKS

G. C. Greubel, Table of n, a(n) for n = -3..1000

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

G.f.: (x^-3) * Product_{k>0} (1 - x^k) * (1 + x^k)^2 / ((1 - x^(25*k)) * (1 + x^(50*k))^2).

EXAMPLE

G.f. = q^-3 + q^-2 + 1 + q^3 + q^7 + q^12 + q^18 - q^22 - q^23 - q^28 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, q^(1/2)] / EllipticTheta[ 2, 0, q^(25/2)], {q, 0, n}]; (* Michael Somos, Nov 11 2015 *)

a[ n_] := SeriesCoefficient[ q^-3 QPochhammer[ q^2]^2 QPochhammer[ q^25] / (QPochhammer[ q] QPochhammer[ q^50]), {q, 0, n}]; (* Michael Somos, Nov 11 2015 *)

PROG

(PARI) {a(n) = my(A); if( n<-3, 0, n+=3; A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^25 + A) / (eta(x + A) * eta(x^50 + A)^2), n))};

CROSSREFS

Sequence in context: A049800 A281082 A204421 * A300067 A035395 A116856

Adjacent sequences:  A131015 A131016 A131017 * A131019 A131020 A131021

KEYWORD

sign,changed

AUTHOR

Michael Somos, Jun 10 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 19 03:48 EST 2019. Contains 329310 sequences. (Running on oeis4.)