login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A049664 a(n)=(F(6n+3)-2)/32, where F=A000045 (the Fibonacci sequence). 6
0, 1, 19, 342, 6138, 110143, 1976437, 35465724, 636406596, 11419853005, 204920947495, 3677157201906, 65983908686814, 1184033199160747, 21246613676206633, 381255012972558648, 6841343619829849032, 122762930143964723929, 2202891398971535181691 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Partial sums of Chebyshev polynomials S(n,18).

LINKS

Table of n, a(n) for n=0..18.

Index entries for sequences related to Chebyshev polynomials.

FORMULA

G.f.: x/(1-19*x+19*x^2-x^3) = x/((1-x)*(1-18*x+x^2).

a(n+1) = sum(S(k, 18), k=0..n) with n>=0, S(k, 18) = U(k, 9) = A049660(k+1).

a(n) = 19*a(n-1)-19*a(n-2)+a(n-3), n>=3, a(0)=0, a(1)=1, a(2)=19.

a(n) = 18*a(n-1)-a(n-2)+1, n>=2, a(0)=0, a(1)=1.

a(n+1) = (S(n+1, 18)-S(n, 18) -1)/16, n>=0.

a(n) = -1/16-(1/80)*(9-4*sqrt(5))^n*sqrt(5)+(1/32)*(9-4*sqrt(5))^n+(1/80)*sqrt(5)*(9+4 *sqrt(5))^n+(1/32)*(9+4*sqrt(5))^n. - Paolo P. Lava, Oct 03 2008

a(n) = 1/8*sum(Fibonacci(6*k), k=0..n). - Gary Detlefs, Dec 07 2010

CROSSREFS

Cf. A053606.

Cf. A212336 for more sequences with g.f. of the type 1/(1-k*x+k*x^2-x^3).

Sequence in context: A142549 A049629 A162805 * A163110 A163453 A163968

Adjacent sequences:  A049661 A049662 A049663 * A049665 A049666 A049667

KEYWORD

nonn

AUTHOR

Clark Kimberling

EXTENSIONS

Chebyshev comments from Wolfdieter Lang, Aug 31 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 23 19:50 EST 2014. Contains 249865 sequences.