This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A049663 a(n) = (F(6*n+5) - 1)/4, where F=A000045 (the Fibonacci sequence). 1
 1, 22, 399, 7164, 128557, 2306866, 41395035, 742803768, 13329072793, 239180506510, 4291920044391, 77015380292532, 1381984925221189, 24798713273688874, 444994854001178547, 7985108658747524976, 143286961003454271025, 2571180189403429353478 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Colin Barker, Table of n, a(n) for n = 0..700 Index entries for linear recurrences with constant coefficients, signature (19,-19,1). FORMULA G.f.: (1+3*x)/( (1-x)*(x^2-18*x+1) ). - R. J. Mathar, Oct 26 2015 a(n) = A049664(n+1) + 3*A049664(n). - R. J. Mathar, Oct 26 2015 From Colin Barker, Mar 04 2016: (Start) a(n) = (-1/4+1/40*(9+4*sqrt(5))^(-n)*(25-11*sqrt(5)+(9+4*sqrt(5))^(2*n)*(25+11*sqrt(5)))). a(n) = 19*a(n-1) - 19*a(n-2) + a(n-3) for n>2. (End) MATHEMATICA (Fibonacci[6*Range[0, 20]+5]-1)/4 (* or *) LinearRecurrence[{19, -19, 1}, {1, 22, 399}, 20] (* Harvey P. Dale, Sep 22 2016 *) PROG (PARI) Vec((1+3*x)/((1-x)*(1-18*x+x^2)) + O(x^25)) \\ Colin Barker, Mar 04 2016 (PARI) for(n=0, 30, print1((fibonacci(6*n+5) - 1)/4, ", ")) \\ G. C. Greubel, Dec 02 2017 (MAGMA) [(Fibonacci(6*n+5) - 1)/4: n in [0..30]]; // G. C. Greubel, Dec 02 2017 CROSSREFS Sequence in context: A264464 A268947 A159761 * A246645 A183539 A269540 Adjacent sequences:  A049660 A049661 A049662 * A049664 A049665 A049666 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 18 07:11 EDT 2019. Contains 326072 sequences. (Running on oeis4.)