login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A048701 List of binary palindromes of even length (written in base 10). 10
0, 3, 9, 15, 33, 45, 51, 63, 129, 153, 165, 189, 195, 219, 231, 255, 513, 561, 585, 633, 645, 693, 717, 765, 771, 819, 843, 891, 903, 951, 975, 1023, 2049, 2145, 2193, 2289, 2313, 2409, 2457, 2553, 2565, 2661, 2709, 2805, 2829, 2925, 2973, 3069, 3075, 3171, 3219, 3315 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

A178225(a(n)) = 1. - Reinhard Zumkeller, Oct 21 2011

a(n) is divisible by 3 and it is always an odd number for n > 1. Therefore a(n) is in A016945 for n > 1. - Altug Alkan, Dec 04 2015

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

FORMULA

a(n) = (2^(floor_log_2(n)+1))*n + Sum_{i=0..floor_log_2(n)} '(bit_i(n, i)*(2^(floor_log_2(n)-i)))'.

MATHEMATICA

Prepend[Select[Range@ 3315, Reverse@ # == # && EvenQ@ Length@ # &@ IntegerDigits[#, 2] &], 0] (* Michael De Vlieger, Dec 04 2015 *)

PROG

(Haskell)

a048701 n = foldr (\d v -> 2 * v + d) 0 (reverse bs ++ bs) where

   bs = a030308_row (n - 1)

-- Reinhard Zumkeller, Feb 19 2003, Oct 21 2011

(PARI) a048701(n) = my(f); f = length(binary(n-1)) - 1; 2^(f+1)*(n-1) + sum(i=0, f, bittest(n-1, i) * 2^(f-i)); \\ Altug Alkan, Dec 03 2015

CROSSREFS

See also A048702 = this sequence divided by 3, A048700 = binary palindromes of odd length, A006995 = all binary palindromes, A048703 = quaternary (base 4) palindromes of even length.

For first differences see A265026, A265027.

Cf. A030308, A007088, A178225.

Sequence in context: A099409 A002127 A061810 * A031159 A058039 A013581

Adjacent sequences:  A048698 A048699 A048700 * A048702 A048703 A048704

KEYWORD

nonn,base

AUTHOR

Antti Karttunen, Mar 07 1999

EXTENSIONS

Offset corrected by Reinhard Zumkeller, Oct 21 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 29 13:14 EDT 2017. Contains 284270 sequences.