This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A048701 List of binary palindromes of even length (written in base 10). 12
 0, 3, 9, 15, 33, 45, 51, 63, 129, 153, 165, 189, 195, 219, 231, 255, 513, 561, 585, 633, 645, 693, 717, 765, 771, 819, 843, 891, 903, 951, 975, 1023, 2049, 2145, 2193, 2289, 2313, 2409, 2457, 2553, 2565, 2661, 2709, 2805, 2829, 2925, 2973, 3069, 3075, 3171, 3219, 3315 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS A178225(a(n)) = 1. - Reinhard Zumkeller, Oct 21 2011 a(n) is divisible by 3 and it is always an odd number for n > 1. Therefore a(n) is in A016945 for n > 1. - Altug Alkan, Dec 04 2015 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 FORMULA a(n) = (2^(floor_log_2(n)+1))*n + Sum_{i=0..floor_log_2(n)} '(bit_i(n, i)*(2^(floor_log_2(n)-i)))'. MATHEMATICA Prepend[Select[Range@ 3315, Reverse@ # == # && EvenQ@ Length@ # &@ IntegerDigits[#, 2] &], 0] (* Michael De Vlieger, Dec 04 2015 *) PROG (Haskell) a048701 n = foldr (\d v -> 2 * v + d) 0 (reverse bs ++ bs) where    bs = a030308_row (n - 1) -- Reinhard Zumkeller, Feb 19 2003, Oct 21 2011 (PARI) a048701(n) = my(f); f = length(binary(n-1)) - 1; 2^(f+1)*(n-1) + sum(i=0, f, bittest(n-1, i) * 2^(f-i)); \\ Altug Alkan, Dec 03 2015 CROSSREFS See also A048702 = this sequence divided by 3, A048700 = binary palindromes of odd length, A006995 = all binary palindromes, A048703 = quaternary (base 4) palindromes of even length. For first differences see A265026, A265027. Cf. A030308, A007088, A178225. Sequence in context: A099409 A002127 A061810 * A031159 A058039 A013581 Adjacent sequences:  A048698 A048699 A048700 * A048702 A048703 A048704 KEYWORD nonn,base AUTHOR Antti Karttunen, Mar 07 1999 EXTENSIONS Offset corrected by Reinhard Zumkeller, Oct 21 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 08:16 EDT 2019. Contains 328292 sequences. (Running on oeis4.)