login
A048701
List of binary palindromes of even length (written in base 10).
15
0, 3, 9, 15, 33, 45, 51, 63, 129, 153, 165, 189, 195, 219, 231, 255, 513, 561, 585, 633, 645, 693, 717, 765, 771, 819, 843, 891, 903, 951, 975, 1023, 2049, 2145, 2193, 2289, 2313, 2409, 2457, 2553, 2565, 2661, 2709, 2805, 2829, 2925, 2973, 3069, 3075, 3171, 3219, 3315
OFFSET
0,2
COMMENTS
A178225(a(n)) = 1. - Reinhard Zumkeller, Oct 21 2011
a(n) is divisible by 3 and it is always an odd number for n > 0. Therefore a(n) is in A016945 for n > 0. - Altug Alkan, Dec 04 2015
LINKS
FORMULA
a(n) = (2^(floor_log_2(n)+1))*n + Sum_{i=0..floor_log_2(n)} '(bit_i(n, i)*(2^(floor_log_2(n)-i)))'.
MATHEMATICA
Prepend[Select[Range@ 3315, Reverse@ # == # && EvenQ@ Length@ # &@ IntegerDigits[#, 2] &], 0] (* Michael De Vlieger, Dec 04 2015 *)
PROG
(Haskell)
a048701 n = foldr (\d v -> 2 * v + d) 0 (reverse bs ++ bs) where
bs = a030308_row (n)
-- Reinhard Zumkeller, Feb 19 2003, Oct 21 2011
(PARI) a048701(n) = my(f); f = length(binary(n)) - 1; 2^(f+1)*n + sum(i=0, f, bittest(n, i) * 2^(f-i)); \\ Altug Alkan, Dec 03 2015
(Python)
def A048701(n):
s = bin(n)[2:]
return int(s+s[::-1], 2) # Chai Wah Wu, Feb 26 2021
CROSSREFS
See also A048702 = this sequence divided by 3, A048700 = binary palindromes of odd length, A006995 = all binary palindromes, A048703 = quaternary (base 4) palindromes of even length.
For first differences see A265026, A265027.
Sequence in context: A002127 A357764 A061810 * A031159 A058039 A371349
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Mar 07 1999
EXTENSIONS
Offset corrected by Reinhard Zumkeller, Oct 21 2011
Offset changed back to 0 by Andrey Zabolotskiy, Dec 26 2022
STATUS
approved