login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A048271 a(0) = 1, a(n+1) = -3*a(n) mod 11. 2
1, 8, 9, 6, 4, 10, 3, 2, 5, 7, 1, 8, 9, 6, 4, 10, 3, 2, 5, 7, 1, 8, 9, 6, 4, 10, 3, 2, 5, 7, 1, 8, 9, 6, 4, 10, 3, 2, 5, 7, 1, 8, 9, 6, 4, 10, 3, 2, 5, 7, 1, 8, 9, 6, 4, 10, 3, 2, 5, 7, 1, 8, 9, 6, 4, 10, 3, 2, 5, 7, 1, 8, 9, 6, 4, 10, 3, 2, 5, 7, 1, 8, 9, 6, 4, 10, 3, 2, 5, 7, 1, 8, 9, 6, 4, 10, 3, 2, 5, 7, 1, 8, 9, 6, 4, 10, 3, 2, 5, 7, 1, 8, 9, 6, 4, 10, 3, 2, 5, 7 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

8^n mod 11. [From Zerinvary Lajos, Nov 28 2009]

REFERENCES

R. M. C. de Souza, H. M. de Oliveira and A. N. Kauffman, Trigonometry in Finite Fields and a new Hartley Transform, in Proceedings of the 1998 IEEE International Symposium on Information Theory. Cambridge: IEEE Press, 1998, page 293.

LINKS

Table of n, a(n) for n=0..119.

Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,-1,1). [From R. J. Mathar, Apr 20 2010]

FORMULA

a(n)=(1/90)*{65*(n mod 10)-7*[(n+1) mod 10]-16*[(n+2) mod 10]+20*[(n+3) mod 10]+74*[(n+4) mod 10]-43*[(n+5) mod 10]+29*[(n+6) mod 10]+38*[(n+7) mod 10]+2*[(n+8) mod 10]-52*[(n+9) mod 10]}, with n>=0 [From Paolo P. Lava, Apr 16 2010]

a(n) = +a(n-1) -a(n-5) +a(n-6). G.f.: (-1-7*x-x^2+3*x^3+2*x^4-7*x^5) / ( (x-1)*(1+x)*(x^4-x^3+x^2-x+1) ) [From R. J. Mathar, Apr 20 2010]

PROG

(Sage) [power_mod(8, n, 11)for n in xrange(0, 120)] # [From Zerinvary Lajos, Nov 28 2009]

CROSSREFS

Sequence in context: A197691 A258104 A253299 * A203146 A203128 A178856

Adjacent sequences:  A048268 A048269 A048270 * A048272 A048273 A048274

KEYWORD

easy,nonn

AUTHOR

Andre Neumann Kauffman (ank(AT)nlink.com.br)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 26 01:25 EDT 2017. Contains 292500 sequences.