login
A048271
a(0) = 1, a(n+1) = -3*a(n) mod 11.
2
1, 8, 9, 6, 4, 10, 3, 2, 5, 7, 1, 8, 9, 6, 4, 10, 3, 2, 5, 7, 1, 8, 9, 6, 4, 10, 3, 2, 5, 7, 1, 8, 9, 6, 4, 10, 3, 2, 5, 7, 1, 8, 9, 6, 4, 10, 3, 2, 5, 7, 1, 8, 9, 6, 4, 10, 3, 2, 5, 7, 1, 8, 9, 6, 4, 10, 3, 2, 5, 7, 1, 8, 9, 6, 4, 10, 3, 2, 5, 7, 1, 8, 9, 6, 4, 10, 3, 2, 5, 7, 1, 8, 9, 6, 4, 10, 3, 2, 5, 7, 1, 8, 9, 6, 4, 10, 3, 2, 5, 7, 1, 8, 9, 6, 4, 10, 3, 2, 5, 7
OFFSET
0,2
LINKS
R. M. C. de Souza, H. M. de Oliveira and A. N. Kauffman, Trigonometry in Finite Fields and a new Hartley Transform, in Proceedings of the 1998 IEEE International Symposium on Information Theory. Cambridge: IEEE Press, 1998, page 293.
Joshua Ide and Marc S. Renault, Power Fibonacci Sequences, Fib. Q. 50(2), 2012, 175-179.
FORMULA
a(n) = 8^n mod 11. - Zerinvary Lajos, Nov 28 2009
From R. J. Mathar, Apr 20 2010: (Start)
a(n) = a(n-1) - a(n-5) + a(n-6).
G.f.: (-1-7*x-x^2+3*x^3+2*x^4-7*x^5) / ( (x-1)*(1+x)*(x^4-x^3+x^2-x+1) ). (End)
MATHEMATICA
NestList[Mod[-3#, 11]&, 1, 120] (* Harvey P. Dale, Jun 15 2021 *)
PROG
(Sage) [power_mod(8, n, 11)for n in range(0, 120)] # Zerinvary Lajos, Nov 28 2009
CROSSREFS
Sequence in context: A342948 A258104 A253299 * A203146 A203128 A178856
KEYWORD
easy,nonn
AUTHOR
Andre Neumann Kauffman (ank(AT)nlink.com.br)
STATUS
approved