login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A048272 Number of odd divisors of n minus number of even divisors of n. 33
1, 0, 2, -1, 2, 0, 2, -2, 3, 0, 2, -2, 2, 0, 4, -3, 2, 0, 2, -2, 4, 0, 2, -4, 3, 0, 4, -2, 2, 0, 2, -4, 4, 0, 4, -3, 2, 0, 4, -4, 2, 0, 2, -2, 6, 0, 2, -6, 3, 0, 4, -2, 2, 0, 4, -4, 4, 0, 2, -4, 2, 0, 6, -5, 4, 0, 2, -2, 4, 0, 2, -6, 2, 0, 6, -2, 4, 0, 2, -6, 5, 0, 2, -4, 4, 0, 4, -4, 2, 0, 4, -2, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

abs(a(n))= 1/2* number of pairs (i,j) satisfying n=i^2-j^2 and -n <= i,j <= n. - Benoit Cloitre, Jun 14 2003

As A001227(n) is the number of ways to write n as the difference of 3-gonal numbers, a(n) describes the number of ways to write n as the difference of e-gonal numbers for e in {0,1,4,8}. If pe(n):=1/2*n*((e-2)*n+(4-e)) is the n-th e-gonal number, then 4*a(n) = |{(m,k) of Z X Z; pe(-1)(m+k)-pe(m-1)=n}| for e=1, 2*a(n) = |{(m,k) of Z X Z; pe(-1)(m+k)-pe(m-1)=n}| for e in {0,4} and for a(n) itself is a(n) = |{(m,k) of Z X Z; pe(-1)(m+k)-pe(m-1)=n}| for e=8. (Same for e=-1 see A035218.) - Volker Schmitt (clamsi(AT)gmx.net), Nov 09 2004

a(A008586(n)) < 0; a(A005843(a(n)) <= 0; a(A016825(n)) = 0; a(A042968(n)) >= 0; a(A005408(n)) > 0. - Reinhard Zumkeller, Jan 21 2012

An argument by Gareth McCaughan suggests that the average of this sequence is log(2). - Hans Havermann, Feb 10 2013

REFERENCES

L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 162, #16, (6), first formula.

S. Ramanujan, Notebooks, Tata Institute of Fundamental Research, Bombay 1957 Vol. 1, see page 97, 7(ii).

LINKS

T. D. Noe, Table of n, a(n) for n = 1..10000

P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc., 19 (1921), 75-113; Coll. Papers II, pp. 303-341.

Mircea Merca, Combinatorial interpretations of a recent convolution for the number of divisors of a positive integer, Journal of Number Theory, Volume 160, March 2016, Pages 60-75, function tau_{o-e}(n).

FORMULA

Coefficients in expansion of Sum_{n >= 1} x^n/(1+x^n) = Sum_{n >= 1} (-1)^(n-1)*x^n/(1-x^n). Expand Sum 1/(1+x^n) in powers of 1/x.

If n = 2^p1*3^p2*5^p3*7^p4*11^p5*..., a(n) = (1-p1)*Product_{i>=2} (1+p_i).

Multiplicative with a(2^e) = 1 - e and a(p^e) = 1 + e if p > 2. - Vladeta Jovovic, Jan 27 2002

a(n) = (-1)*Sum_{d|n} (-1)^d. - Benoit Cloitre, May 12 2003

Moebius transform is period 2 sequence [1, -1, ...]. - Michael Somos, Jul 22 2006

G.f.: Sum_{k>0} -(-1)^k * x^(k^2) * (1 + x^(2*k)) / (1 - x^(2*k)) [Ramanujan]. - Michael Somos, Jul 22 2006

Equals A051731 * [1, -1, 1, -1, 1, ...]. - Gary W. Adamson, Nov 07 2007

a(n) = A001227(n) - A183063(n). - Reinhard Zumkeller, Jan 21 2012

a(n) = Sum_{k=0..n} A081362(k)*A015723(n-k). - Mircea Merca, Feb 26 2014

abs(a(n)) = A112329(n) = A094572(n) / 2. - Ray Chandler, Aug 23 2014

From Peter Bala, Jan 07 2015: (Start)

Logarithmic g.f.: log( Product_{n >= 1} (1 + x^n)^(1/n) ) = Sum_{n >= 1} a(n)*x^n/n.

a(n) = A001227(n) - A183063(n). By considering the logarithmic generating functions of these three sequences we obtain the identity

( Product_{n >= 0} (1 - x^(2*n+1))^(1/(2*n+1)) )^2 = Product_{n >= 1} ( (1 - x^n)/(1 + x^n) )^(1/n). (End)

Dirichlet g.f.: zeta(s)*eta(s) = zeta(s)^2*(1-2^(-s+1)). - Ralf Stephan, Mar 27 2015

a(2*n - 1) = A099774(n). - Michael Somos, Aug 12 2017

EXAMPLE

a(20) = -2 because 20 = 2^2*5^1 and (1-2)*(1+1) = -2.

G.f. = x + 2*x^3 - x^4 + 2*x^5 + 2*x^7 - 2*x^8 + 3*x^9 + 2*x^11 - 2*x^12 + ...

MAPLE

add(x^n/(1+x^n), n=1..60): series(%, x, 59);

A048272 := proc(n)

    local a;

    a := 1 ;

    for pfac in ifactors(n)[2] do

        if pfac[1] = 2 then

            a := a*(1-pfac[2]) ;

        else

            a := a*(pfac[2]+1) ;

        end if;

    end do:

    a ;

end proc: # Schmitt, sign corrected R. J. Mathar, Jun 18 2016

MATHEMATICA

Rest[ CoefficientList[ Series[ Sum[x^k/(1 - (-x)^k), {k, 111}], {x, 0, 110}], x]] (* Robert G. Wilson v, Sep 20 2005 *)

dif[n_]:=Module[{divs=Divisors[n]}, Count[divs, _?OddQ]-Count[ divs, _?EvenQ]]; Array[dif, 100] (* Harvey P. Dale, Aug 21 2011 *)

PROG

(PARI) {a(n) = if( n<1, 0, -sumdiv(n, d, (-1)^d))}; /* Michael Somos, Jul 22 2006 */

(PARI)

N=17; default(seriesprecision, N); x=z+O(z^(N+1))

c=sum(j=1, N, j*x^j); \\ log case

s=-log(prod(j=1, N, (1+x^j)^(1/j)));

s=serconvol(s, c)

v=Vec(s) \\ Joerg Arndt, May 03 2008

(PARI) a(n)=my(o=valuation(n, 2), f=factor(n>>o)[, 2]); (1-o)*prod(i=1, #f, f[i]+1) \\ Charles R Greathouse IV, Feb 10 2013

(PARI) a(n)=direuler(p=1, n, if(p==2, (1-2*X)/(1-X)^2, 1/(1-X)^2))[n] /* Ralf Stephan, Mar 27 2015 */

(PARI) {a(n) = my(d = n -> if(frac(n), 0, numdiv(n))); if( n<1, 0, if( n%4, 1, -1) * (d(n) - 2*d(n/2) + 2*d(n/4)))}; /* Michael Somos, Aug 11 2017 */

(Haskell)

a048272 n = a001227 n - a183063 n  -- Reinhard Zumkeller, Jan 21 2012

CROSSREFS

Cf. A048298. A diagonal of A060184.

First differences of A059851.

Cf. A001227, A035218, A094572, A099774, A112329, A183063.

Sequence in context: A239703 A029338 A240883 * A112329 A117448 A093321

Adjacent sequences:  A048269 A048270 A048271 * A048273 A048274 A048275

KEYWORD

easy,sign,nice,mult

AUTHOR

Adam Kertesz

EXTENSIONS

New definition from Vladeta Jovovic, Jan 27 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 18 12:21 EST 2017. Contains 294891 sequences.