This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A048176 Generalized Stirling number triangle of first kind. 3
 1, -10, 1, 200, -30, 1, -6000, 1100, -60, 1, 240000, -50000, 3500, -100, 1, -12000000, 2740000, -225000, 8500, -150, 1, 720000000, -176400000, 16240000, -735000, 17500, -210, 1, -50400000000, 13068000000, -1313200000, 67690000, -1960000, 32200, -280, 1, 4032000000000, -1095840000000 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(n,m)= R_n^m(a=0,b=10) in the notation of the given reference. a(n,m) is a Jabotinsky matrix, i.e., the monic row polynomials E(n,x) := sum(a(n,m)*x^m,m=1..n) = product(x-10*j,j=0..n-1), n >= 1, E(0,x) := 1, are exponential convolution polynomials (see A039692 for the definition and a Knuth reference). Also the Bell transform of the sequence (-1)^n*A051262(n) without column 0. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 28 2016 REFERENCES Mitrinovic, D. S.; Mitrinovic, R. S.; Tableaux d'une classe de nombres relies aux nombres de Stirling. Univ. Beograd. Pubi. Elektrotehn. Fak. Ser. Mat. Fiz. No. 77 1962, 77 pp. LINKS FORMULA a(n, m) = a(n-1, m-1) - 10*(n-1)*a(n-1, m), n >= m >= 1; a(n, m) := 0, n (-1)^n*n!*10^n, 9); # Peter Luschny, Jan 28 2016 MATHEMATICA rows = 9; t = Table[(-1)^n*n!*10^n, {n, 0, rows}]; T[n_, k_] := BellY[n, k, t]; Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *) CROSSREFS First (m=1) (unsigned) column sequence is: A051262(n-1). Row sums (signed triangle): A049212(n-1)*(-1)^(n-1). Row sums (unsigned triangle): A045757(n). b=8: A051187, b=9: A051231. Sequence in context: A308282 A223512 A131367 * A127616 A191549 A285647 Adjacent sequences:  A048173 A048174 A048175 * A048177 A048178 A048179 KEYWORD sign,easy,tabl AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 18:31 EDT 2019. Contains 328319 sequences. (Running on oeis4.)