login
A047937
Number of 2-colorings of an n X n grid, up to rotational symmetry.
15
1, 2, 6, 140, 16456, 8390720, 17179934976, 140737496748032, 4611686019501162496, 604462909807864344215552, 316912650057057631849169289216, 664613997892457937028364283517337600, 5575186299632655785385110159782842147536896, 187072209578355573530071668259090783437390809661440
OFFSET
0,2
COMMENTS
Cycle index = 1/4(s_1^(n^2)+ 2 s_4^floor(n^2/4)s_1^(n mod 2)+s_2^floor(n^2/2)s_1^(n mod 2)). - Geoffrey Critzer, Oct 28 2011
LINKS
Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv:2311.13072 [math.CO], 2023.
FORMULA
a(n) = (m^(n^2) + 2*m^((n^2 + 3*(n mod 2))/4) + m^((n^2 + (n mod 2))/2))/4, with m = 2.
EXAMPLE
a(2)=6 from
00 10 11 10 11 11
00 00 00 01 10 11
MATHEMATICA
Table[(2^(n^2)+2*2^Floor[n^2/4]*2^Mod[n, 2]+2^Floor[n^2/2]*2^Mod[n, 2])/4, {n, 0, 10}] (* Geoffrey Critzer, Oct 28 2011 *)
CROSSREFS
Column k=2 of A343095.
Cf. A054247.
Sequence in context: A368395 A090907 A159478 * A027731 A280821 A145143
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
Terms a(12) and beyond from Andrew Howroyd, Apr 14 2021
STATUS
approved