

A047935


Consider primes p with least positive primitive root g such that q=p+g is next prime after p; sequence gives values of g.


3



1, 2, 2, 2, 2, 2, 2, 2, 2, 6, 2, 2, 2, 6, 2, 6, 10, 2, 6, 2, 2, 2, 6, 2, 2, 6, 6, 2, 10, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6, 2, 6, 2, 6, 6, 2, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 2, 2, 10, 2, 2, 2, 2, 6, 2, 6, 2, 2, 2, 2, 6, 2, 2, 2, 2, 10, 6, 10, 2, 2, 2, 10, 2, 2, 2, 6, 10
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


REFERENCES

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 864.


LINKS

T. D. Noe, Table of n, a(n) for n=1..1000
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Index entries for primes by primitive root


EXAMPLE

11 has primitive root 2 and 11+2 = 13 is prime after 11, which contributes a 2 to the sequence.


MATHEMATICA

f[p_] := {g = PrimitiveRoot[p], p + g == NextPrime[p]};
A047935 = Select[f /@ Prime /@ Range[1000], #[[2]]& ][[All, 1]](* JeanFrançois Alcover, Feb 15 2012 *)


CROSSREFS

Cf. A047933, A047934. See also A001918.
Sequence in context: A064128 A104274 A008857 * A103795 A123627 A171818
Adjacent sequences: A047932 A047933 A047934 * A047936 A047937 A047938


KEYWORD

nice,nonn


AUTHOR

Felice Russo


EXTENSIONS

More terms from James A. Sellers, Dec 22 1999


STATUS

approved



