login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A047807
Duplicate of A008700.
0
1, 144, 193104, 16809408, 397822032, 4630076640, 34416785088, 187487524224, 814891939920, 2975535123408, 9486534607200, 27053022904128, 70486183583424, 169931012132448, 384163644219264, 820166796086400
OFFSET
0,2
COMMENTS
Original title: Theta series of Niemeier lattice of type A_5^4*D_4.
FORMULA
This series is the q-expansion of 2/3 E_4(z)^3 + 1/3 E_6(z)^2. Cf. A004009, A013973. - Daniel D. Briggs, Nov 25 2011
MATHEMATICA
terms = 16; E4[q_] := 1 + 240 Sum[DivisorSigma[3, n]*q^(2 n), {n, 1, terms}]; E6[q_] := 1 - 504 Sum[DivisorSigma[5, n]*q^(2 n), {n, 1, terms}]; s = 2/3 E4[q]^3 + 1/3 E6[q]^2 + O[q]^(3 terms); Partition[ CoefficientList[s, q], 2][[All, 1]][[1 ;; terms]] (* Jean-François Alcover, Jul 06 2017 *)
CROSSREFS
Equal to the theta series of D_4^6, A008700.
Sequence in context: A159724 A221124 A008700 * A023112 A159424 A013751
KEYWORD
dead
EXTENSIONS
More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jul 05 2000
STATUS
approved