login
A043303
Numerator of B(4n+2)/(2n+1) where B(m) are the Bernoulli numbers.
2
1, 1, 1, 1, 43867, 77683, 657931, 1723168255201, 151628697551, 154210205991661, 1520097643918070802691, 25932657025822267968607, 19802288209643185928499101, 29149963634884862421418123812691, 2913228046513104891794716413587449, 396793078518930920708162576045270521
OFFSET
0,5
COMMENTS
Note that numerator of B(2n)/n is odd so B(2n)/(2n), B(2n)/(4n), etc. have the same numerators. - Michael Somos, Feb 01 2004
REFERENCES
Bruce Berndt, Ramanujan's Notebooks Part II, Springer-Verlag; see Infinite series, p. 262.
LINKS
FORMULA
B(4*n+2)/(8*n+4) = Sum_{k>=1} k^(4*n+1)/(exp(2*Pi*k)-1).
a(n) = A001067(2n+1).
MAPLE
seq(numer(bernoulli(4*n+2)/(2*n+1)), n=0..30); # Robert Israel, Sep 18 2016
MATHEMATICA
Table[BernoulliB[4n+2]/(2n+1), {n, 0, 20}]//Numerator (* Harvey P. Dale, Aug 13 2018 *)
PROG
(PARI) a(n)=if(n<0, 0, numerator(bernfrac(4*n+2)/(2*n+1)))
CROSSREFS
Sequence in context: A206517 A279892 A037147 * A233790 A378097 A359127
KEYWORD
easy,frac,nonn
AUTHOR
Benoit Cloitre, Apr 04 2002
STATUS
approved