login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A043300 Denominator of L(n)=sum(k=1,n,k^n)/sum(k=1,n-1,k^n). 1
1, 1, 49, 52, 20515, 7689, 1976849, 769072, 196573677, 1176564625, 2252928456427, 915495729492, 116920050750711, 202297407264253, 1206847874699507489, 1507470694179701824, 6945343389873635897155 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,3

COMMENTS

L(n) has the amazing asymptotic development L(n)= e+ c(1)/n+c(2)/n^2+c(3)/n^3+... with c(1)=e(e+1)/2/(e-1) c(2)=e(11*e^3+3*e^2-51*e-11)/24/(e-1)^3 etc, where e =exp(1).

REFERENCES

"A sequence convergent to Napier's Constant" by Alexandru Lupas from the University "Lucian Blaga" of Sibiu / e-mail: lupas(AT)jupiter.sibiu.ro

LINKS

Table of n, a(n) for n=2..18.

PROG

(PARI) a(n) = denominator(sum(k = 1, n, k^n)/sum(k = 1, n-1, k^n)); \\ Michel Marcus, Nov 21 2013

CROSSREFS

Cf. A043299.

Sequence in context: A257443 A020276 A118073 * A304008 A305358 A140388

Adjacent sequences:  A043297 A043298 A043299 * A043301 A043302 A043303

KEYWORD

easy,frac,nonn

AUTHOR

Benoit Cloitre, Apr 04 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 10:59 EDT 2019. Contains 328147 sequences. (Running on oeis4.)