login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A042265 Denominators of continued fraction convergents to sqrt(658). 2
1, 1, 2, 3, 20, 23, 43, 66, 3343, 3409, 6752, 10161, 67718, 77879, 145597, 223476, 11319397, 11542873, 22862270, 34405143, 229293128, 263698271, 492991399, 756689670, 38327474899, 39084164569, 77411639468, 116495804037, 776386463690, 892882267727 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,3386,0,0,0,0,0,0,0,-1).

FORMULA

G.f.: -(x^2-x-1)*(x^4+3*x^2+1)*(x^8+22*x^4+1) / (x^16-3386*x^8+1). - Colin Barker, Dec 06 2013

a(n) = 3386*a(n-8) - a(n-16) for n>15. - Vincenzo Librandi, Jan 19 2014

MAPLE

convert(sqrt(658), confrac, 30, cvgts): denom(cvgts); # Wesley Ivan Hurt, Dec 07 2013

MATHEMATICA

Denominator[Convergents[Sqrt[658], 30]] (* Vincenzo Librandi, Jan 19 2014 *)

PROG

(MAGMA) I:=[1, 1, 2, 3, 20, 23, 43, 66, 3343, 3409, 6752, 10161, 67718, 77879, 145597, 223476]; [n le 16 select I[n] else 3386*Self(n-8)-Self(n-16): n in [1..40]]; // Vincenzo Librandi, Jan 19 2014

CROSSREFS

Cf. A042264, A040632.

Sequence in context: A024630 A032809 A279180 * A041093 A154746 A042781

Adjacent sequences:  A042262 A042263 A042264 * A042266 A042267 A042268

KEYWORD

nonn,frac,easy

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Colin Barker, Dec 06 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 9 06:30 EST 2016. Contains 278963 sequences.