login
A042267
Denominators of continued fraction convergents to sqrt(659).
2
1, 1, 3, 76, 155, 231, 11705, 11936, 35577, 901361, 1838299, 2739660, 138821299, 141560959, 421943217, 10690141384, 21802225985, 32492367369, 1646420594435, 1678912961804, 5004246518043, 126785075912879, 258574398343801, 385359474256680
OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 11860, 0, 0, 0, 0, 0, -1).
FORMULA
G.f.: -(x^10-x^9+3*x^8-76*x^7+155*x^6-231*x^5-155*x^4-76*x^3-3*x^2-x-1) / (x^12-11860*x^6+1). - Colin Barker, Dec 06 2013
MAPLE
convert(sqrt(659), confrac, 30, cvgts): denom(cvgts); # Wesley Ivan Hurt, Dec 07 2013
MATHEMATICA
Denominator[Convergents[Sqrt[659], 30]] (* Vincenzo Librandi, Jan 19 2014 *)
LinearRecurrence[{0, 0, 0, 0, 0, 11860, 0, 0, 0, 0, 0, -1}, {1, 1, 3, 76, 155, 231, 11705, 11936, 35577, 901361, 1838299, 2739660}, 30] (* Harvey P. Dale, Dec 18 2022 *)
PROG
(Magma) I:=[1, 1, 3, 76, 155, 231, 11705, 11936, 35577, 901361, 1838299, 2739660]; [n le 12 select I[n] else 11860*Self(n-6)-Self(n-12): n in [1..40]]; // Vincenzo Librandi, Jan 19 2014
CROSSREFS
Sequence in context: A089301 A037110 A168385 * A201428 A141103 A300386
KEYWORD
nonn,frac,easy
AUTHOR
EXTENSIONS
More terms from Colin Barker, Dec 06 2013
STATUS
approved