The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A041030 Numerators of continued fraction convergents to sqrt(20). 2
 4, 9, 76, 161, 1364, 2889, 24476, 51841, 439204, 930249, 7881196, 16692641, 141422324, 299537289, 2537720636, 5374978561, 45537549124, 96450076809, 817138163596, 1730726404001, 14662949395604 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Index entries for linear recurrences with constant coefficients, signature (0,18,0,-1). FORMULA a(2n-1) = ceiling(1/(4/(Fibonacci(6n)*sqrt(5)-Lucas(6n)+2)-2)), a(2n) = ceiling(1/(1-2/(Fibonacci(6n+3)*sqrt(5)-Lucas(6n+3)+2))-2). - Thomas Baruchel G.f.: (4+9*x+4*x^2-x^3)/(1-18*x^2+x^4). From Gerry Martens, Jul 11 2015: (Start) Interspersion of 2 sequences [a0(n),a1(n)] for n>0 : a0(n) = -((2+sqrt(5))/(9+4*sqrt(5))^n)+(-2+sqrt(5))*(9+4*sqrt(5))^n. a1(n) = (1/(9+4*sqrt(5))^n+(9+4*sqrt(5))^n)/2. (End) MATHEMATICA Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[20], n]]], {n, 1, 50}] (* Vladimir Joseph Stephan Orlovsky, Mar 17 2011 *) Numerator[Convergents[Sqrt[20], 30]] (* Vincenzo Librandi, Oct 28 2013 *) a0[n_] := -((2+Sqrt[5])/(9+4*Sqrt[5])^n)+(-2+Sqrt[5])*(9+4*Sqrt[5])^n //Simplify a1[n_] := (1/(9+4*Sqrt[5])^n+(9+4*Sqrt[5])^n)/2 // Simplify Flatten[MapIndexed[{a0[#], a1[#]} &, Range[20]]] (* Gerry Martens, Jul 11 2015 *) CROSSREFS Cf. A010476, A041031, A087953. Sequence in context: A100517 A327579 A041597 * A061104 A082381 A155931 Adjacent sequences:  A041027 A041028 A041029 * A041031 A041032 A041033 KEYWORD nonn,cofr,frac,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 22 22:19 EDT 2021. Contains 343197 sequences. (Running on oeis4.)