login
A039840
Number of partitions satisfying cn(0,5) <= cn(2,5) + cn(3,5).
0
1, 1, 2, 3, 5, 6, 10, 14, 21, 28, 38, 51, 71, 93, 124, 161, 212, 272, 353, 449, 575, 726, 918, 1149, 1444, 1796, 2235, 2760, 3410, 4188, 5145, 6282, 7666, 9313, 11308, 13677, 16526, 19891, 23921, 28683, 34356, 41030, 48948, 58245, 69236, 82113, 97269, 114982, 135774, 160013, 188373, 221368, 259857, 304537, 356522
OFFSET
0,3
COMMENTS
For a given partition cn(i,n) means the number of its parts equal to i modulo n.
Short: 0 <= 2 + 3 (BBp).
MATHEMATICA
okQ[p_] := Module[{c},
c[k_] := c[k] = Count[Mod[p, 5], k];
c[0] <= c[2] + c[3]];
a[n_] := a[n] = Count[okQ /@ IntegerPartitions[n], True];
Table[Print[n, " ", a[n]]; a[n], {n, 0, 54}] (* Jean-François Alcover, Oct 11 2024 *)
CROSSREFS
Sequence in context: A325715 A325534 A280013 * A039845 A371132 A347868
KEYWORD
nonn
EXTENSIONS
a(0)=1 prepended by Jean-François Alcover, Oct 11 2024
STATUS
approved