login
A039838
Number of partitions satisfying cn(0,5) <= cn(2,5) and cn(0,5) <= cn(3,5).
0
1, 1, 2, 3, 5, 6, 10, 13, 19, 25, 35, 45, 62, 79, 105, 136, 177, 223, 288, 362, 463, 578, 727, 901, 1128, 1394, 1726, 2117, 2604, 3179, 3895, 4729, 5748, 6949, 8411, 10134, 12206, 14628, 17536, 20957, 25043, 29805, 35455, 42054, 49873, 59005, 69726, 82186, 96821, 113842, 133775, 156840, 183704, 214803, 251023
OFFSET
0,3
COMMENTS
For a given partition cn(i,n) means the number of its parts equal to i modulo n.
Short: 0 <= 2 and 0 <= 3 (BB).
MATHEMATICA
okQ[p_] := Module[{c},
c[k_] := c[k] = Count[Mod[p, 5], k];
c[0] <= c[2] && c[0] <= c[3]];
a[n_] := a[n] = Count[okQ /@ IntegerPartitions[n], True];
Table[Print[n, " ", a[n]]; a[n], {n, 0, 54}] (* Jean-François Alcover, Oct 11 2024 *)
CROSSREFS
Sequence in context: A036004 A027339 A039837 * A064173 A145724 A039843
KEYWORD
nonn
EXTENSIONS
a(0)=1 prepended by Jean-François Alcover, Oct 11 2024
STATUS
approved