OFFSET
0,3
LINKS
R. Suter, Two analogues of a classical sequence, J. Integer Sequences, Vol. 3 (2000), #P00.1.8.
FORMULA
E.g.f.: 1/4 * (exp(4*x)-1) * exp(1/2*exp(2*x)+x-1/2).
MATHEMATICA
max = 18; CoefficientList[ Series[1/4*E^x*(E^(4*x) - 1)*E^((1/2)*(E^(2*x) - 1)), {x, 0, max}], x]*Range[0, max]! (* Jean-François Alcover, Oct 04 2013, after e.g.f. *)
PROG
(PARI) x='x+O('x^66); concat([0], Vec( serlaplace( 1/4*(exp(4*x)-1)*exp(1/2*exp(2*x)+x-1/2) ) ) ) \\ Joerg Arndt, Oct 04 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Ruedi Suter (suter(AT)math.ethz.ch)
STATUS
approved